相信大家既然看到了这里,就已经了解了N皇后问题,所以我们在这里不做过多赘述了,8皇后问题回溯的过程太多了,有点难想,所以我们先来解决4皇后问题,他们两解决的思路是一样的,解决了四皇后问题我们也就解决了8皇后问题。
在这里我们要理解最重要的一点就是:当把调用该方法时所创建的栈空间还给系统时,返回上一层所调用该方法的地方,并且继续执行后面的代码。
我们可以将二维的棋盘抽象成一维的数组,给这个数组开辟4个空间代表了4个皇后,向这个数组赋值就代表给每个皇后确定的位置。
现在我们先上代码,对着代码我们来讲解
public class Queen {
private int max = 4;
private int[] array = new int[max];
public static void main(String[] args) {
//
Queen queen = new Queen();
// 从第一个皇后开始寻找
queen.check(0);
}
public void check(int n) {
// 如果是第5个皇后那么我就结束
if (n == 4) {
printArray();
return;
}
/** 循环棋盘的每一行 */
for (int i = 0; i < 4; i++) {
/** 将第n个皇后的位置记录下来,放入数组,看看是否发生冲突 */
array[n] = i;
/** 如果这一个皇后放着不会产生冲突 ,那么看下一皇后 */
if (judge(n)) {
check(n + 1);
}
}
}
public boolean judge(int n) {
// 由于每个皇后在棋盘上的每一行只能放一个,
for (int i = 0; i < n; i++) {
// 判断 是否在同一列上 和对角线上
if (array[i] == array[n] || Math.abs(i - n) == Math.abs(array[i] - array[n])) {
return false;
}
}
return true;
}
public void printArray() {
for (int i = 0; i < array.length; i++) {
//
System.out.print(array[i] + ",");
}
System.out.println();
}
}
直接在主类中创建一个对象,然后调用查找方法
public void check(int n) {
// 如果是第5个皇后那么我就结束
if (n == 4) {
printArray();
return;
}
/** 循环棋盘的每一行 */
for (int i = 0; i < 4; i++) {
/** 将第n个皇后的位置记录下来,放入数组,看看是否发生冲突 */
array[n] = i;
/** 如果这一个皇后放着不会产生冲突 ,那么看下一皇后 */
if (judge(n)) {
check(n + 1);
}
}
}
现在我们开始分析,n=0,array[0]=0 代表将第一行的皇后位置放在第一个位置上,现在只有一个皇后所以一定满足判断条件,再次调用方法check(1)来确定第二个皇后的位置,array[1]=0不满足判断条件,所以返回到上一层调用该方法的地方,执行后面的语句i++,array[1]=1也不满足判断条件,所以继续返回上一层调用该方法的敌法,执行后面的i++,array[1]=2满足条件,进入check(2),array[2]=0, 不满足条件,返回check(2)执行i++ array[2]=1,不满足条件 array[2]=2和array[2]=3也都不满足条件,返回i++后,i=4不满足条件这个栈空间就返回给系统,回到上一层的check执行后面的++,i=3,arr[1]=3将第二行的皇后向后移动一位,剩下的过程和我上面描述的过程大体一样,我就不写了,感兴趣的可以拿笔在纸上画画。
判断的过程就是将当前行的皇后位置与前面已经找到的皇后的位置进行判断,如果满足就返回一个true,不满足的话就返回一个false,这道题的精彩部分就是递归的使用,主要是要理解我前面写的红色字体,深刻了解递归,这道题的代码是不难的。