转载于哔哩哔哩UP主【文小刀是也】
逻辑回归来源于线性回归的,即使用线性回归去拟合逼近一个“界”,使得按照这个界分类的cost最小。普通的logistic回归只能针对二分类,以概率0.5为界,将数据分为正例反例。使对应于正例,对应于反例。
1.求解思路
核心问题:
使用的模型如下:
构造损失函数,
结合得
2.求解过程
因此结果为
求解最优的决策边界后,使用梯度下降法迭代求最大的W:
转载于哔哩哔哩UP主【文小刀是也】
逻辑回归来源于线性回归的,即使用线性回归去拟合逼近一个“界”,使得按照这个界分类的cost最小。普通的logistic回归只能针对二分类,以概率0.5为界,将数据分为正例反例。使对应于正例,对应于反例。
核心问题:
使用的模型如下:
构造损失函数,
结合得
因此结果为
求解最优的决策边界后,使用梯度下降法迭代求最大的W: