OJ链接
星际战争开展了100年之后,NowCoder终于破译了外星人的密码!他们的密码是一串整数,通过一张表里的信息映射成最终4位密码。表的规则是:n对应的值是矩阵X的n次方的左上角,如果这个数不足4位则用0填充,如果大于4位的则只输出最后4位。
|1 1|^n => |Xn …|
|1 0| |… …|
例如n=2时,
|1 1|^2 => |1 1| * |1 1| => |2 1|
|1 0| |1 0| |1 0| |1 1|
即2对应的数是“0002”。
输入描述:
输入有多组数据。
每组数据两行:第一行包含一个整数n (1≤n≤100);第二行包含n个正整数Xi (1≤Xi≤10000)
输出描述:
对应每一组输入,输出一行相应的密码。
示例1
输入
6
18 15 21 13 25 27
5
1 10 100 1000 10000
输出
418109877711037713937811
00010089410135017501
-
本题解读:其实问题描述的很清楚,现在有一个矩阵,此时要得到它的左上角的元素,如果这个元素的位数大于4,那么只取它的后四位。
如果左上角的这个元素的位数小于4,那么必须让他满足4位数,在这个数的前面补0.并且在之后输入进来的元素中,n表示矩阵的n次方。最后把左上角的元素进行拼接。
-
解题思路:本题有两处要进行输入,第一:就是输入n的个数。第二:就是矩阵的n次方,中的n。
其实本题就是一个斐波那契数列的一个变种。
主要代码:
import java.util.*;
public class Main{
public static void main(String []args){
int []nums = new int[10001];
nums[1] = 1; //第一个矩阵的左上角
nums[2] = 2; //第二个矩阵的左上角
for(int i = 3;i<10001;i++){
nums[i] = nums[i-1] + nums[i-2]; //变种斐波那契数列,求解
nums[i] = nums[i] % 10000; //本题描述中,左上角的元素不能超过4位
}
Scanner scanner = new Scanner(System.in);
while(scanner.hasNext()){
StringBuilder sb = new StringBuilder();
int n = scanner.nextInt();
for(int i = 0;i<n;i++){
int xi = scanner.nextInt();
sb.append(String.format("%04d",nums[xi])); //对左上角的不满4位的元素进行格式化
}
System.out.println(sb);
}
}
}