算法思想:本题求解的是小易要最少跳几次石板,就可以跳到最后一个石板。那么就是求解一个跳石板的最优解,那么我们就会联想到使用动态规划来进行求解。简单的来说动态规划就是你这一步要求解的结果,要利用上你上一步求解的结果.
因为在本题中要输入现在小易所在的石板位置,和最终小易要到达的石板位置。我们把起先的石板位置定义为n,最终的位置定义为m,新建一个数组step,初始化step中的内容为整形的最大值。那么小易现在的位置就是step[n],因为小易要到第n个石板现在所需的步数为0,所以step[n] = 0;在step数组中表示的是,小易要到的对应step下标的步数。下一个石板的编号 = 现在的石板编号 + 现在石板编号的一个约数。
//N = 4,M = 24:
//4->6->8->12->18->24
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();//小易的初始位置
int m = scanner.nextInt();//小易最终要到达的位置
int []step = new int[m + 1];
//创建出一个数组step,在step数组,里面存放的是跳石板的次数,在这里我们初始化为整数的最大值
for(int i = 0;i<step.length;i++){
step[i] = Integer.MAX_VALUE;
}
step[n] = 0; //小易在第n个石板,到第n个石板不需要跳,所以设置step[n] =
for(int i = n;i<step.length;i++){
if(step[i] == Integer.MAX_VALUE){
continue;
}
List<Integer> list = div(i); //得到约数
for(int j : list){
if(i + j <= m && step[i + j] != Integer.MAX_VALUE){
step[i+j] = Math.min(step[i+j],step[i] + 1); //因为跳到一个石板上有好几种跳法,在这里为了得到最优解
//所以得到做到石板的最小步数
}else if(i + j <= m){ //下一个要跳到的石板=现在的石板位置+现在石板个数的一个约数,找到相应的石板之后,步数在上一个石板上的步数 + 1
step[i+j] = step[i] + 1;
}
}
}
if(step[m] == Integer.MAX_VALUE){
System.out.println(-1);
}else{
System.out.println(step[m]);
}
}
public static List<Integer> div(int n){
List<Integer> list = new ArrayList<>();
for(int i = 2;i * i <= n;i++){
if(n % i == 0){
list.add(i);
if(n / i != i){
list.add(n / i);
}
}
}
return list;
}