【每日一题】跳石板--动态规划

OJ链接
请添加图片描述

算法思想:本题求解的是小易要最少跳几次石板,就可以跳到最后一个石板。那么就是求解一个跳石板的最优解,那么我们就会联想到使用动态规划来进行求解。简单的来说动态规划就是你这一步要求解的结果,要利用上你上一步求解的结果.

因为在本题中要输入现在小易所在的石板位置,和最终小易要到达的石板位置。我们把起先的石板位置定义为n,最终的位置定义为m,新建一个数组step,初始化step中的内容为整形的最大值。那么小易现在的位置就是step[n],因为小易要到第n个石板现在所需的步数为0,所以step[n] = 0;在step数组中表示的是,小易要到的对应step下标的步数。下一个石板的编号 = 现在的石板编号 + 现在石板编号的一个约数。

请添加图片描述

     //N = 4,M = 24:
    //4->6->8->12->18->24
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();//小易的初始位置
        int m = scanner.nextInt();//小易最终要到达的位置
        int []step = new int[m + 1];
        //创建出一个数组step,在step数组,里面存放的是跳石板的次数,在这里我们初始化为整数的最大值
        for(int i = 0;i<step.length;i++){
            step[i] = Integer.MAX_VALUE;
        }
        step[n] = 0; //小易在第n个石板,到第n个石板不需要跳,所以设置step[n] = 
        for(int i = n;i<step.length;i++){
            if(step[i] == Integer.MAX_VALUE){
                continue;
            }
            List<Integer> list = div(i); //得到约数
            for(int j : list){
                if(i + j <= m && step[i + j] != Integer.MAX_VALUE){
                    step[i+j] = Math.min(step[i+j],step[i] + 1); //因为跳到一个石板上有好几种跳法,在这里为了得到最优解
                    //所以得到做到石板的最小步数
                }else if(i + j <= m){ //下一个要跳到的石板=现在的石板位置+现在石板个数的一个约数,找到相应的石板之后,步数在上一个石板上的步数 + 1
                    step[i+j] = step[i] + 1;
                }
            }
        }
        if(step[m] == Integer.MAX_VALUE){
            System.out.println(-1);
        }else{
            System.out.println(step[m]);
        }
    }
    public static List<Integer> div(int n){
        List<Integer> list = new ArrayList<>();
        for(int i = 2;i * i <= n;i++){
            if(n % i == 0){
                list.add(i);
                if(n / i != i){
                    list.add(n / i);
                }
            }
        }
        return list;
    }
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小周学编程~~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值