中国剩余定理(孙子定理)

参考文献

感谢武大佬的PPT和精彩讲解

中国剩余定理模板(有误,已修改) 

扩展欧几里得算法详解,不熟悉的可以去参考一下

题意:

人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。

分析: 首先我们要知道,任意两个峰值之间一定相距整数倍的周期。假设一年的第N天达到峰值,则下次达到峰值的时间为N+Tk(T是周期,k是任意正整数)。所以,三个峰值同时出现的那一天(S)应满足 S=N1+T1∗k1=N2+T2∗k2=N3+T3∗k3 N1,N2,N3分别为为体力,情感,智力出现峰值的日期, T1,T2,T3分别为体力,情感,智力周期。 我们需要求出k1,k2,k3三个非负整数使上面的等式成立。

想直接求出k1,k2,k3貌似很难,但是我们的目的是求出S, 可以考虑从结果逆推。根据上面的等式,S满足三个要求:除以T1余数为N1,除以T2余数为N2,除以T3余数为N3。这样我们就把问题转化为求一个最小数,该数除以T1余N1,除以T2余N2,除以T3余N3。这就是著名的中国剩余定理,我们的老祖宗在几千年前已经对这个问题想出了一个精妙的解法。依据此解法的算法,时间复杂度可达到O(1)。

在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。具体解法分三步:

  1. 找出三个数:从3和5的公倍数中找出被7除余1的最小数15,从3和7的公倍数中找出被5除余1 的最小数21,最后从5和7的公倍数中找出除3余1的最小数70。
  2. 用15乘以2(2为最终结果除以7的余数),用21乘以3(3为最终结果除以5的余数),同理,用70乘以2(2为最终结果除以3的余数),然后把三个乘积相加15∗2+21∗3+70∗2得到和233。
  3. 用233除以3,5,7三个数的最小公倍数105,得到余数23,即233%105=23。这个余数23就是符合条件的最小数。 就这么简单。我们在感叹神奇的同时不禁想知道古人是如何想到这个方法的,有什么基本的数学依据吗

首先,我们假设n1是满足除以3余2的一个数,比如2,5,8等等,也就是满足3∗k+2(k>=0)的一个任意数。同样,我们假设n2是满足除以5余3的一个数,n3是满足除以7余2的一个数。

有了前面的假设,我们先从n1这个角度出发,已知n1满足除以3余2,能不能使得n1+n2的和仍然满足除以3余2?进而使得n1+n2+n3的和仍然满足除以3余2?

这就牵涉到一个最基本数学定理,如果有a%b=c,则有(a+k∗b)%b=c(k为非零整数),换句话说,如果一个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。这个是很好证明的。 以此定理为依据,如果n2是3的倍数,n1+n2就依然满足除以3余2。同理,如果n3也是3的倍数,那么n1+n2+n3的和就满足除以3余2。这是从n1的角度考虑的,再从n2,n3的角度出发,我们可推导出以下三点:

  1. 为使n1+n2+n3的和满足除以3余2,n2和n3必须是3的倍数。
  2. 为使n1+n2+n3的和满足除以5余3,n1和n3必须是5的倍数。
  3. 为使n1+n2+n3的和满足除以7余2,n1和n2必须是7的倍数。

因此,为使n1+n2+n3的和作为“孙子问题”的一个最终解,需满足:

  1. n1除以3余2,且是5和7的公倍数。
  2. n2除以5余3,且是3和7的公倍数。
  3. n3除以7余2,且是3和5的公倍数。

所以,孙子问题解法的本质是从5和7的公倍数中找一个除以3余2的数n1,从3和7的公倍数中找一个除以5余3的数n2,从3和5的公倍数中找一个除以7余2的数n3,再将三个数相加得到解。

在求n1,n2,n3时用了一个小技巧,以n1为例,并非从5和7的公倍数中直接找一个除以3余2的数,而是先找一个除以3余1的数,再乘以2。求除3余1相当于求出5和7的公倍数模3下的逆元。再用逆元去乘余数。(逆元直接套公式,这样不用遍历了)

上述方法为何成立?

如果a%b=c,那么如果x%b=c/2,此时x=a/2;也就是说除数相等时,被除数和余数是成比例的。2可以换成其他比例。也就是说如果x%b=c/k,此时x=a/k。(此时满足c%k==0,a%k==0)

推导

\because a%b=c \therefore a=tb+c ∴a/k=t/k*b+c/k ∴(a/k)%b=(t/k*b+c/k)%b ∴(a/k)%b=c/k

这里t/k不必是整数,见下例

 ∵x%b=c/k ∴x=a/k

例:15=2*6+3

        5=1*6+1

这里又有一个数学公式,如果a%b=c,那么(a∗k)%b=(a+a+...+a)%b=(a%b+a%b+…+a%b)%b=(c+c+…+c)%b=(kc)%b(k>0) 如4*3%3=(1+1+1)%3=0

也就是说,如果一个除法的余数为c,那么被除数的k倍与除数相除的余数为(k∗c)%b。展开式中已证明。

最后,我们还要清楚一点,n1+n2+n3只是问题的一个解,并不是最小的解。如何得到最小解?我们只需要从中最大限度的减掉掉3,5,7的公倍数105即可。道理就是前面讲过的定理“如果a%b=c,则有(a−k∗b)%b=c”。所以(n1+n2+n3)%105就是最终的最小解。

模板

typedef long long ll;
ll exgcd(ll a,ll b,ll &x,ll &y){//扩展欧几里得算法 ax+by=c 求解a,b 
    if(!b){
        x=1,y=0;
        return a;
    }
    ll ans=exgcd(b,a%b,x,y);
    ll temp=x;
    x=y;
    y=temp-a/b*y;
    return ans;
}
ll inv(ll a,ll p){//求逆元 ax1(mod p)=>a*x+p*y=1 这里我们求x 要求a与p互质,即gcd(a,p)=1 如果不存在返回-1 
	ll x,y,gcd;
	gcd=exgcd(a,p,x,y);
	return (x%p+p)%p;; //x%p+p确保逆元为正数  
} 
ll china(ll a[],ll b[],int n) { //a[]为除数,b[]为余数,n为有几个除数余数对,M为互质的a[]的最小公倍数,返回值+kM就是全部值 
	ll M=1,y,x=0;
	for(int i=0; i<n; ++i) //算出它们累乘的结果
		M*=a[i];
	for(int i=0; i<n; ++i) {
		ll w=M/a[i];
		int t=inv(w,a[i]);//计算逆元
		x=(x+w*(b[i]*t))%M;
	}
	return (x+M)%M;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值