采用flask+vue+kmodes聚类算法 前后端分离架构
K-modes聚类算法是对K-means聚类算法的扩展,主要适用于处理分类属性型数据。这种算法使用汉明距离作为相似性的评价指标,即两个对象之间有多少对应特征不同,则它们的距离就是几。在K-modes算法中,中心点是通过选择众数来计算的。
K-modes算法的主要功能包括随机初始化聚类中心以及计算聚类。此外,它还可以选择每次聚类的次数以及选择最佳的聚类初始化方式。这种算法在处理具有分类属性的数据集时特别有用,如国籍、性别等特征。
首页展示 以及后台管理界面
有需要的同学可以联系