毕业设计之短视频数据分析系统设计与实现

本文介绍了如何在基于Flask和Vue的项目中应用K-modes聚类算法,该算法适用于处理分类属性数据,如性别和国籍。文章详细阐述了算法原理、聚类过程以及在前后端分离架构中的应用,包括首页展示和后台管理的实现方式。
摘要由CSDN通过智能技术生成

采用flask+vue+kmodes聚类算法 前后端分离架构

K-modes聚类算法是对K-means聚类算法的扩展,主要适用于处理分类属性型数据。这种算法使用汉明距离作为相似性的评价指标,即两个对象之间有多少对应特征不同,则它们的距离就是几。在K-modes算法中,中心点是通过选择众数来计算的。

K-modes算法的主要功能包括随机初始化聚类中心以及计算聚类。此外,它还可以选择每次聚类的次数以及选择最佳的聚类初始化方式。这种算法在处理具有分类属性的数据集时特别有用,如国籍、性别等特征。

首页展示 以及后台管理界面

有需要的同学可以联系

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值