数学建模——算法部分

前言:马上就是数学建模比赛了,我主要负责算法部分,打算快速的入个门,做做笔记以便回忆。整个学习的基础是买的b站清风的课,看看怎么样。

一、层次分析法

首先,我们应该明确:1,分析的目标是什么?2、达到目标有哪几种方案?3、评价方案的标准是什么?

一般题目会给前两个条件, 我们根据题目背景材料,常识和网上资料(优先知网等学术平台)整合筛选出最合适的指标。 引用专业文献参考价值大,如果没有相关文献,可以用谷歌,虫部落等搜索。

而确立了评价标准之后,我们则应比较标准的权重,而当标准比较多的时候,一时难以区分,我们则应两两比较,从而排列出优先级。我们可以使用矩阵来进行方便的比较:

其中aij表达的含义是与指标j相比,i的重要程度。矩阵满足aij>0,且aij*aji=1。(满足这一条件的矩阵称为正互反矩阵)

这就是层次分析法中的判断矩阵。

上图展示的是评价标准中的判断矩阵,而我们也可以用同样的方法分别以某个标准对不同的方案进行判断矩阵的绘制。

如果判断矩阵各个大小比较不矛盾,则称为一致矩阵,特点是:aij*ajk=aik,各行之间大小成比例。求权重之前,必须进行一致性检验。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值