- 博客(1)
- 收藏
- 关注
原创 Convergent Bregman Plug-and-Play ImageRestoration for Poisson Inverse Problems文章翻译与分析
Plug-and-Play (PnP)方法是用于解决不适定图像反问题的高效迭代算法。PnP方法通过使用深度高斯去噪器替代在近端算法中的近端算子或梯度下降步骤而得到。当前的PnP方案依赖于具有Lipschitz梯度或封闭形式近端算子的数据保真度项,这在泊松反问题中不适用。基于观察到高斯噪声在这种情况下不是适当的噪声模型,我们提出使用Bregman Proximal Gradient(BPG)方法推广PnP。BPG用Bregman散度替换欧氏距离,可以更好地捕捉问题的光滑性质。
2024-01-27 15:37:31
1469
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅