C/C++实现洛谷P1217 [USACO1.5] 回文质数 Prime Palindromes 题目(题解)

题目:

因为 151151 既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151151 是回文质数。

写一个程序来找出范围 [a,b](5≤a<b≤100,000,000)(一亿)间的所有回文质数。

首先可以得知,int类型可能放不下后面这么大的数,那么我选择用 long long int 一步到位

那么按照基本流程,根据提示可以得知,我们需要先判断回文数,再判断质数(素数)

//判断是否为回文数(是返回true,不是返回false)
bool huiwen(long long int n) {
	//存储倒序过来的n
	long long int un = 0;
	//循环用的临时变量
	long long int temp = n;
	while (temp) {//倒序操作
		un = un * 10 + (temp % 10);
		temp /= 10;
	}
	if (n == un) {
		return true;
	}
	else {
		return false;
	}
}
//判断是否为质数(是返回true,不是返回false)
bool zhishu(long long int n) {
	for (long long int i = 2; i <n; i++) {
		if (0 == n % i) {
			return false;
		}
	}
	return true;
}
int main() {
	long long int a,b;
	cin >> a>>b;
	for (long long int i = a; i <= b; i+=2)
	{
		
		if (huiwen(i)) {
			if (zhishu(i)) {
				cout << i << endl;
			}
		}
		
	}
	return 0;
}

 好,以上便是这道题的解()

如果你拿这个去提交答案,那么恭喜你...超时了!

那么下面便是我的优化思路:

一、首当其冲的便是判断素数,这部分的循环判断的范围可以优化成从输入数n到其开方:sqrt(n)

当然还有个质数表的优化方法,好像是叫孪生质数,但是emmm比较难理解,我就没用那种方法

详情请看:【算法】素数(质数)判断方法

//优化后的质数判断(用sqrt需要引用头文件:#include<math.h>)
bool zhishu(long long int n) {
	for (long long int i = 2; i <= sqrt(n); i++) {
		if (0 == n % i) {
			return false;
		}
	}
	return true;
}

二、优化完质数判断,此时再去提交应该就剩最后一个测试点超时了,我看了半天的题解,发现他们也是对数据的测试范围做优化,比如:

1.除去11以外,数字位数是 偶数 的没有回文质数

2.从a,b的循环可以只循环奇数,因为偶数肯定不是质数,这样还能减少函数调用次数

3.数字个位是0的回文数只有0,但测试范围从5开始,所以可以排除数字个位是0的数字

4.100000000(1亿)肯定不是回文质数

 所以以后再有超时的情况,我们就可以直接对输入的数先提前找好各种逻辑关系,排除掉一大批一眼就知道不行的数,这样可以尽量避免超时

那么优化后的完整代码:

#include<iostream>
#include<math.h>

using namespace std;

bool weishu(long long int n) {
	//除去11以外,数字位数是 偶数 的没有回文质数
	//100000000(1亿)肯定不是回文质数
	if ((1000 <= n && n <= 9999) || (100000 <= n && n <= 999999) || (10000000 <= n && n <= 99999999) || (100000000 == n))return false;
	return true;
}

bool huiwen(long long int n) {
	//存储倒序过来的n
	long long int un = 0;
	//循环用的临时变量
	long long int temp = n;
	//先判断个位是不是0.要是0的话直接就返回false,因为数字个位是0的回文数只有0
	if (0 == n % 10) {
		return false;
	}
	while (temp) {//倒序操作
		un = un * 10 + (temp % 10);
		temp /= 10;
	}
	if (n == un) {
		return true;
	}
	else {
		return false;
	}
}

bool zhishu(long long int n) {
	for (long long int i = 2; i <= sqrt(n); i++) {
		if (0 == n % i) {
			return false;
		}
	}
	return true;
}

int main() {
	long long int a,b;
	cin >> a>>b;
	//进行奇数循环,因为偶数肯定不是质数
	if (0 == a % 2) {
		a++;
	}
	for (long long int i = a; i <= b; i+=2)
	{
		if (weishu(i)) {
			if (huiwen(i)) {
				if (zhishu(i)) {
					cout << i << endl;
				}
			}
		}
	}
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值