题目:
因为 151151 既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151151 是回文质数。
写一个程序来找出范围 [a,b](5≤a<b≤100,000,000)(一亿)间的所有回文质数。
首先可以得知,int类型可能放不下后面这么大的数,那么我选择用 long long int 一步到位
那么按照基本流程,根据提示可以得知,我们需要先判断回文数,再判断质数(素数)
//判断是否为回文数(是返回true,不是返回false)
bool huiwen(long long int n) {
//存储倒序过来的n
long long int un = 0;
//循环用的临时变量
long long int temp = n;
while (temp) {//倒序操作
un = un * 10 + (temp % 10);
temp /= 10;
}
if (n == un) {
return true;
}
else {
return false;
}
}
//判断是否为质数(是返回true,不是返回false)
bool zhishu(long long int n) {
for (long long int i = 2; i <n; i++) {
if (0 == n % i) {
return false;
}
}
return true;
}
int main() {
long long int a,b;
cin >> a>>b;
for (long long int i = a; i <= b; i+=2)
{
if (huiwen(i)) {
if (zhishu(i)) {
cout << i << endl;
}
}
}
return 0;
}
好,以上便是这道题的解()
如果你拿这个去提交答案,那么恭喜你...超时了!
那么下面便是我的优化思路:
一、首当其冲的便是判断素数,这部分的循环判断的范围可以优化成从输入数n到其开方:sqrt(n)
当然还有个质数表的优化方法,好像是叫孪生质数,但是emmm比较难理解,我就没用那种方法
详情请看:【算法】素数(质数)判断方法
//优化后的质数判断(用sqrt需要引用头文件:#include<math.h>)
bool zhishu(long long int n) {
for (long long int i = 2; i <= sqrt(n); i++) {
if (0 == n % i) {
return false;
}
}
return true;
}
二、优化完质数判断,此时再去提交应该就剩最后一个测试点超时了,我看了半天的题解,发现他们也是对数据的测试范围做优化,比如:
1.除去11以外,数字位数是 偶数 的没有回文质数
2.从a,b的循环可以只循环奇数,因为偶数肯定不是质数,这样还能减少函数调用次数
3.数字个位是0的回文数只有0,但测试范围从5开始,所以可以排除数字个位是0的数字
4.100000000(1亿)肯定不是回文质数
所以以后再有超时的情况,我们就可以直接对输入的数先提前找好各种逻辑关系,排除掉一大批一眼就知道不行的数,这样可以尽量避免超时
那么优化后的完整代码:
#include<iostream>
#include<math.h>
using namespace std;
bool weishu(long long int n) {
//除去11以外,数字位数是 偶数 的没有回文质数
//100000000(1亿)肯定不是回文质数
if ((1000 <= n && n <= 9999) || (100000 <= n && n <= 999999) || (10000000 <= n && n <= 99999999) || (100000000 == n))return false;
return true;
}
bool huiwen(long long int n) {
//存储倒序过来的n
long long int un = 0;
//循环用的临时变量
long long int temp = n;
//先判断个位是不是0.要是0的话直接就返回false,因为数字个位是0的回文数只有0
if (0 == n % 10) {
return false;
}
while (temp) {//倒序操作
un = un * 10 + (temp % 10);
temp /= 10;
}
if (n == un) {
return true;
}
else {
return false;
}
}
bool zhishu(long long int n) {
for (long long int i = 2; i <= sqrt(n); i++) {
if (0 == n % i) {
return false;
}
}
return true;
}
int main() {
long long int a,b;
cin >> a>>b;
//进行奇数循环,因为偶数肯定不是质数
if (0 == a % 2) {
a++;
}
for (long long int i = a; i <= b; i+=2)
{
if (weishu(i)) {
if (huiwen(i)) {
if (zhishu(i)) {
cout << i << endl;
}
}
}
}
return 0;
}