class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int n = nums.size();
if (n == 0) {
return 0;
}
int ans = INT_MAX;
vector<int> sums(n + 1, 0);
// 为了方便计算,令 size = n + 1
// sums[0] = 0 意味着前 0 个元素的前缀和为 0
// sums[1] = A[0] 前 1 个元素的前缀和为 A[0]
// 以此类推
for (int i = 1; i <= n; i++) { // 计算前缀和
sums[i] = sums[i - 1] + nums[i - 1];
}
for (int i = 1; i <= n; i++) { // 确定每个子数组的开始下标
int target = s + sums[i - 1]; // (也就是说,假设从数组中下标为i的符号开始累加,累加到s), 而这个过程,相当于从第一个数字开始累加,加到下标为i之前的数字sum[i-1],再加上s
// 这两个过程的终点的索引都是一样的,所以对每个不同的开始下标i,都有一个相同的前缀和数组,能够查到从i开始累加到target的时候,对应的最后一个元素的索引j
auto bound = lower_bound(sums.begin(), sums.end(), target); // 在sums中利用二分查找法寻找target,或者这里可以直接用二分查找的代码替代
// 对于每个开始下标i,可通过二分查找得到大于或等于i的最小下标bound(因为是从i开始累加的,所以肯定是大于等于i的)
if (bound != sums.end()) { // 找到了对应的索引
ans = min(ans, static_cast<int>((bound - sums.begin()) - (i - 1))); // 子数组的长度是bound - i - 1, 可能内置函数需要强制类型转换, 不断比较,取最小值即可
}
}
return ans == INT_MAX ? 0 : ans;
}
};
2.2 解法二(滑动窗口)
时间复杂度
空间复杂度
代码
class Solution{
public:
int minSubArrayLen(int target, vector<int>& nums){
int n = nums.size();
int start = 0, end = 0;
int sum = 0;
int ans = INT_MAX;
if (n == 0){
return 0;
}
while (end < n){
sum += nums[end];
while (sum >= target){
ans = min(ans, end - start + 1);
sum -= nums[start++];
}
end++;
}
return (ans == INT_MAX)? 0 : ans;
}
};