0209.长度最小的子数组

1. 题目

2. 解法

2.1 解法一(前缀和+二分查找)

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int n = nums.size();

        if (n == 0) {
            return 0;
        }

        int ans = INT_MAX;

        vector<int> sums(n + 1, 0); 
        // 为了方便计算,令 size = n + 1 
        // sums[0] = 0 意味着前 0 个元素的前缀和为 0
        // sums[1] = A[0] 前 1 个元素的前缀和为 A[0]
        // 以此类推

        for (int i = 1; i <= n; i++) {  // 计算前缀和
            sums[i] = sums[i - 1] + nums[i - 1];
        }

        for (int i = 1; i <= n; i++) {  // 确定每个子数组的开始下标
            int target = s + sums[i - 1];   // (也就是说,假设从数组中下标为i的符号开始累加,累加到s), 而这个过程,相当于从第一个数字开始累加,加到下标为i之前的数字sum[i-1],再加上s
            // 这两个过程的终点的索引都是一样的,所以对每个不同的开始下标i,都有一个相同的前缀和数组,能够查到从i开始累加到target的时候,对应的最后一个元素的索引j

            auto bound = lower_bound(sums.begin(), sums.end(), target); // 在sums中利用二分查找法寻找target,或者这里可以直接用二分查找的代码替代
            // 对于每个开始下标i,可通过二分查找得到大于或等于i的最小下标bound(因为是从i开始累加的,所以肯定是大于等于i的)

            if (bound != sums.end()) { // 找到了对应的索引
                ans = min(ans, static_cast<int>((bound - sums.begin()) - (i - 1))); // 子数组的长度是bound - i - 1, 可能内置函数需要强制类型转换, 不断比较,取最小值即可
            }
        }

        return ans == INT_MAX ? 0 : ans;
    }
};

2.2 解法二(滑动窗口)

  • 时间复杂度O(n)
  • 空间复杂度O(1)
  • 代码
class Solution{
public:
    int minSubArrayLen(int target, vector<int>& nums){
        int n = nums.size();
        int start = 0, end = 0;
        int sum = 0;
        int ans = INT_MAX;

        if (n == 0){
            return 0;
        }

        while (end < n){
            sum += nums[end];

            while (sum >= target){
                ans = min(ans, end - start + 1);
                sum -= nums[start++]; 
            }

            end++;
        }

        return (ans == INT_MAX)? 0 : ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值