神经网络与深度学习课程总结三:基本卷积神经网络、数据集、任务评价指标和目标检测与YOLO
本周的课程总结接着上周的内容继续,内容主要包括:基本卷积神经网络、数据集、任务评价指标和目标检测与YOLO。
一、基本卷积神经网络
1 AlexNet
1.1 网络提出
1.2 网络结构
1.3 网络说明
1.4 网络改进策略
1.4.1 输入样本
1.4.2 激活函数
1.4.3 Dropout
1.4.4 双GPU策略
2 VGG-16
2.1 网络提出
2.2 网络结构
2.3 网络说明
3 残差网络(ResNet)
3.1 为什么需要残差网络
非残差网络的缺陷
残差网络的优势
梯度消失问题
3.2 构建残差网络
为解决该问题,考虑在隔一层的神经元之间加入一个“skip connection”,如图所示
使得各层输出变为如下形式
目前较常见的为两层构成一残差块,如图
经验证,此种结构可以有效地在层数增加时降低training error,相较于传统结构在层数增加时易出现training error上升有一定优势。
二、深度学习与视觉应用
1 常用数据集
1.1 MNIST
1.2 CIFAR 10数据集
1.3 PASCAL VOC数据集
1.4 MS COCO数据集
1.5 ImageNet
1.6 JFT-300M
2 评价指标
2.1 精确率与召回率
2.2 平均精度
3 目标检测与YOLO
3.1 目标检测问题
3.2 分类问题与目标检测
目标检测输出表达:
3.3 目标检测技术发展