神经网络与深度学习课程总结三:基本卷积神经网络、数据集、任务评价指标和目标检测与YOLO

神经网络与深度学习课程总结三:基本卷积神经网络、数据集、任务评价指标和目标检测与YOLO


本周的课程总结接着上周的内容继续,内容主要包括:基本卷积神经网络、数据集、任务评价指标和目标检测与YOLO。


一、基本卷积神经网络

1 AlexNet

1.1 网络提出

在这里插入图片描述

1.2 网络结构

在这里插入图片描述

1.3 网络说明

在这里插入图片描述
在这里插入图片描述

1.4 网络改进策略
1.4.1 输入样本

在这里插入图片描述

1.4.2 激活函数

在这里插入图片描述

1.4.3 Dropout

在这里插入图片描述

1.4.4 双GPU策略

在这里插入图片描述


2 VGG-16

2.1 网络提出

在这里插入图片描述

2.2 网络结构

在这里插入图片描述
在这里插入图片描述

2.3 网络说明

在这里插入图片描述


3 残差网络(ResNet)

3.1 为什么需要残差网络

非残差网络的缺陷
在这里插入图片描述
残差网络的优势
在这里插入图片描述
梯度消失问题
在这里插入图片描述
在这里插入图片描述

3.2 构建残差网络

为解决该问题,考虑在隔一层的神经元之间加入一个“skip connection”,如图所示
在这里插入图片描述
使得各层输出变为如下形式
在这里插入图片描述
目前较常见的为两层构成一残差块,如图
在这里插入图片描述
经验证,此种结构可以有效地在层数增加时降低training error,相较于传统结构在层数增加时易出现training error上升有一定优势。
在这里插入图片描述


二、深度学习与视觉应用

1 常用数据集

1.1 MNIST

在这里插入图片描述

1.2 CIFAR 10数据集

在这里插入图片描述
在这里插入图片描述

1.3 PASCAL VOC数据集

在这里插入图片描述
在这里插入图片描述

1.4 MS COCO数据集

在这里插入图片描述
在这里插入图片描述

1.5 ImageNet

在这里插入图片描述

1.6 JFT-300M

在这里插入图片描述


2 评价指标

2.1 精确率与召回率

在这里插入图片描述
在这里插入图片描述

2.2 平均精度

在这里插入图片描述


3 目标检测与YOLO

3.1 目标检测问题

在这里插入图片描述

3.2 分类问题与目标检测

在这里插入图片描述
目标检测输出表达:
在这里插入图片描述

3.3 目标检测技术发展

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值