原题解:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
using namespace std;
bool f[21][21];//记录是否有路径相连
int a[21];//记录地雷数
int path[21],ans[21],cnt;//path记录路径,ans记录答案,cnt记录走了多少个点
bool b[21];//记录该点是否走过
int n;
int maxx;//记录挖的最大地雷数
bool chck(int x)//检查是否还能继续往下挖
{
for(int i=1;i<=n;i++)
{
if(f[x][i]&&!b[i]) return false;
}
return true;
}
void dfs(int x,int stp,int sum)//x记录现在位置,stp记录走了几个点,sum记录挖的地雷数
{
if(chck(x))
{
if(maxx<sum)//更新最大值和路径
{
maxx=sum;
cnt=stp;
for(int i=1;i<=stp;i++)
ans[i]=path[i];
}
return ;
}
for(int i=1;i<=n;i++)//寻找下一个能去的地方
{
if(f[x][i]&&!b[i])
{
b[i]=1;//标记走过
path[stp+1]=i;//记录路径
dfs(i,stp+1,sum+a[i]);
b[i]=0;//回溯
}
}
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=1;i<n;i++)
for(int j=i+1;j<=n;j++)
{
cin>>f[i][j];//这里是单向边,题目没啥清楚,导致我调了半个小时;
}
for(int i=1;i<=n;i++)
{
b[i]=1;
path[1]=i;//记录起点
dfs(i,1,a[i]);
//b[i]=0;
}
for(int i=1;i<=cnt;i++)
cout<<ans[i]<<' ';
cout<<endl<<maxx;
return 0;
}
根据题解自己完成的:
#include <stdio.h>
int path[21];int g[21][21];int a[21];int ans[21];int b[21];//记录该点是否走过
int stp=1;int N;int max=0,maxx=0;int cnt;
bool check(int x) {
for(int i=1;i<=N;i++) {
if(g[x][i]&&!b[i])
return true;
}
return false;
}
void dfs(int x,int stp,int maxx) {
if(!check(x)) { //假若x之后无其他可走结点
if(max<maxx) {
cnt=stp;
max=maxx;
for(int i=1;i<=stp;i++) {
ans[i] = path[i];
}
}
return ;
}
for(int i=1;i<=N;i++) { //寻找下一个能走得结点
if(g[x][i]&&!b[i]) {
path[stp+1]=i;
b[i]=1;
dfs(i,stp+1,maxx+a[i]);
b[i]=0; //回溯 ,不能省略!
}
}
}
int main() {
int i,j;
scanf("%d",&N);
for(i=1;i<=N;i++)scanf("%d",&a[i]);
for(i=1;i<N;i++)
for(j=i+1;j<=N;j++) {
scanf("%d",&g[i][j]);
}
for(i=1;i<=N;i++) { //以每个地窖未为起点进行dfs
b[i]=1; //置为1标志走过
path[stp]=i;
dfs(i,stp,a[i]);
}
for(i=1;i<=cnt;i++)
printf("%d ",ans[i]);
printf("\n%d",max);
return 0;
}
刷题总结:之前想直接用最后的stp去替代原题解的cnt,但代码中全局变量stp和函数中局部变量stp值的传递关系不太明确,所以最后用回cnt. (经调试,第二篇代码的全局变量stp多余(实际完全能像第一篇代码一样用数字代替),若在主函数中修改stp值会造成算法错误),该算法的回溯语句必不可少。
若修改子函数中形参stp的值 ,不会回传至全局变量sttp中。