[ABC296E] Transition Game题解

文章讨论了当两个人使用最优策略时,在特定的图结构游戏中,如何确定必胜点。通过分析环状结构和点的连接性,得出环中的点和被环连接的点是必胜点。实现方法类似于拓扑排序,通过计算节点的入度来找出这些点。最终,提供了一个C++代码示例来计算必胜点的数量。
摘要由CSDN通过智能技术生成

传送门

解题思路

两个人都用最优策略时,第一个人将 K i K_i Ki 选择地很大时显然会让第二个人更难赢。

首先考虑环的情况

K i K_i Ki 很大的情况下,我们可以在环中选择一个点,而后在环中不停转圈走到另一个点。由于起点自由选择,所以环中每个点都可以到达。因而环中的每个点都是必胜点。

其次考虑一个点不在环中

如果这个点可以通过环中的某个点达到,就同环中的情况类似,只是最后几步走出这个环,所以这个点也是必胜点。如果这个点通向一个环,显然没有任何用处,它并不是必胜点。

结论

环中的点和被环连接的点都是必胜点,其余点都是必败点。

如何实现

类似于拓扑排序。 环中的每个点入度都不可能变为 0 0 0 ,同理环所连接的点入度也不可能为 0 0 0

代码示例

#include<bits/stdc++.h>
using namespace std;
int n,a[200010],du[200010],ans=0;
queue<int> q;
int main(){
	cin>>n;
	for(int i=1;i<=n;i++) cin>>a[i],du[a[i]]++;
	for(int i=1;i<=n;i++) if(du[i]==0) q.push(i);
	while(!q.empty()){//算出不在环中且不被环连接的点的数量
		int o=q.front();
		q.pop();
		ans++;
		du[a[o]]--;
		if(du[a[o]]==0) q.push(a[o]);
	}
	cout<<n-ans<<endl;//求的是必胜点的数量
	return 0;
}

不知道讲的清不清楚

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值