解题思路
两个人都用最优策略时,第一个人将 K i K_i Ki 选择地很大时显然会让第二个人更难赢。
首先考虑环的情况
在 K i K_i Ki 很大的情况下,我们可以在环中选择一个点,而后在环中不停转圈走到另一个点。由于起点自由选择,所以环中每个点都可以到达。因而环中的每个点都是必胜点。
其次考虑一个点不在环中
如果这个点可以通过环中的某个点达到,就同环中的情况类似,只是最后几步走出这个环,所以这个点也是必胜点。如果这个点通向一个环,显然没有任何用处,它并不是必胜点。
结论
环中的点和被环连接的点都是必胜点,其余点都是必败点。
如何实现
类似于拓扑排序。 环中的每个点入度都不可能变为 0 0 0 ,同理环所连接的点入度也不可能为 0 0 0 。
代码示例
#include<bits/stdc++.h>
using namespace std;
int n,a[200010],du[200010],ans=0;
queue<int> q;
int main(){
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i],du[a[i]]++;
for(int i=1;i<=n;i++) if(du[i]==0) q.push(i);
while(!q.empty()){//算出不在环中且不被环连接的点的数量
int o=q.front();
q.pop();
ans++;
du[a[o]]--;
if(du[a[o]]==0) q.push(a[o]);
}
cout<<n-ans<<endl;//求的是必胜点的数量
return 0;
}
不知道讲的清不清楚