地球赤道周长:40075.02千米 ,地球平均半径:6371.393千米,圆周率:3.141592653589793(以上是百度的结果)
Haversine公式(半正矢公式)
原理分析
直接套公式,简洁高效。
球面余弦定理:
d
=
R
×
arccos
(
cos
(
纬度
A
)
cos
(
纬度
B
)
cos
(
经度
A
−
经度
B
)
+
sin
(
纬度
A
)
sin
(
纬度
B
)
)
d= R \times \arccos\bigg(\cos(纬度A) \cos(纬度B) \cos(经度A-经度B) + \sin(纬度A) \sin(纬度B)\bigg)
d=R×arccos(cos(纬度A)cos(纬度B)cos(经度A−经度B)+sin(纬度A)sin(纬度B))
Haversine公式推导过程:
https://zhuanlan.zhihu.com/p/202993882?utm_source=wechat_session
https://www.douban.com/note/766524321/
Python代码
import math
R = 6371.393
Pi = math.pi
jingduA, weiduA= 116.295794, 39.890115
jingduB, weiduB = 121.400053, 31.212544
a = (math.sin(math.radians(weiduA/2-weiduB/2)))**2
b = math.cos(weiduA*Pi/180) * math.cos(weiduB*Pi/180) * (math.sin((jingduA/2-jingduB/2)*Pi/180))**2
L = 2 * R * math.asin((a+b)**0.5)
# 因为地球平均半径用的是千米,所以最后结果的单位也是千米
print(L)
SQL
最近涉及到用sql计算距离,来填补一下。以下代码Oracle和MySQL都能执行
-- 最后结果的单位是米
with tmp as(
select 103.20887 lng1, 30.613502 lat1, 104.737777 lng2, 31.520277 lat2, acos(-1) pi from dual
)
select d.lng1, d.lat1, d.lng2, d.lat2
,2*6371393*asin(sqrt(sin(d.deltaLat/2)*sin(d.deltaLat/2)+cos(d.lat1*pi/180)*cos(d.lat2*pi/180)*sin(d.deltaLng/2)*sin(d.deltaLng/2))) as dist_asin
,6371393*acos(sin(d.lat1*pi/180)*sin(d.lat2*pi/180)+cos(d.lat1*pi/180)*cos(d.lat2*pi/180)*cos(d.deltaLng)) as dist_acos
from (
select c.lng1,c.lat1, c.lng2, c.lat2, c.pi,
(c.lat1*pi/180-c.lat2*pi/180) as deltaLat,(c.lng1*pi/180-c.lng2*pi/180) as deltaLng
from tmp c
) d;
向量法求两地距离
原理分析
思路:以地心为原点,建立空间直角坐标系。将地球上任意两点的经纬度坐标转为直角坐标。然后用向量求出夹角余弦值,最后用角度求弧长。
误差:地球不是完美的球体。
-
以地心为原点,建立空间直角坐标系:
-
X轴为地心到(经度:0°、纬度:0°)的向量
Y轴为地心到(经度:90°、纬度:0°)的向量
Z轴为地心到(纬度:90°)的向量
经纬度与空间直角坐标系的对应关系 | 地球两地间距离的示意图 |
---|---|
![]() | ![]() |
由此可以得到由经纬度到空间直角坐标系的对应关系:
x = cos ( 纬度 ) cos ( 经度 ) , y = cos ( 纬度 ) sin ( 经度 ) , z = sin ( 纬度 ) x = \cos(纬度)\cos(经度) \ ,y = \cos(纬度) \sin(经度) \ ,z = \sin(纬度) x=cos(纬度)cos(经度) ,y=cos(纬度)sin(经度) ,z=sin(纬度)
由两个点对应的向量求出向量夹角:
cos
θ
=
V
A
⋅
V
B
∣
V
A
∣
×
∣
V
B
∣
θ
=
arccos
(
V
A
⋅
V
B
∣
V
A
∣
⋅
∣
V
B
∣
)
\cos\theta = \frac{V_A \cdot V_B }{|V_A| \times |V_B|} \qquad \qquad \theta=\arccos(\frac{V_A \cdot V_B }{|V_A| \cdot |V_B|})
cosθ=∣VA∣×∣VB∣VA⋅VBθ=arccos(∣VA∣⋅∣VB∣VA⋅VB)
假设地球为理想球体:半径大约3959英里(6371.393千米) 。这个数字是地心到地球表面所有各点距离的平均值,平均半径=(赤道半径×2+极半径)/3。
则由半径和夹角可求弧长:
弧长
l
=
π
R
θ
180
=
α
R
弧长l=\pi R \frac{\theta}{180} = \alpha R
弧长l=πR180θ=αR
其中 θ \theta θ是圆心角度数(角度制),R是半径,L是圆心角弧长, α \alpha α是圆心角度数(弧度制)。 α = π θ / 180 \alpha = \pi \theta/180 α=πθ/180
Python代码
import math
R = 6371.393
Pi = math.pi
# A地
jingduA, weiduA= 116.295794, 39.890115
xA = math.cos(math.radians(weiduA))*math.cos(math.radians(jingduA))
yA = math.cos(math.radians(weiduA))*math.sin(math.radians(jingduA))
zA = math.sin(math.radians(weiduA))
# B地
jingduB, weiduB = 121.400053, 31.212544
xB = math.cos(weiduB*Pi/180) * math.cos(jingduB*Pi/180)
yB = math.cos(weiduB*Pi/180) * math.sin(jingduB*Pi/180)
zB = math.sin(weiduB*Pi/180)
# 开始计算
cosalpha = (xA*xB+yA*yB+zA*zB)/((xA*xA+yA*yA+zA*zA)*(xB*xB+yB*yB+zB*zB))**0.5
alpha = math.acos(cosalpha)
L = alpha * R
# 单位是千米
print(L)
知识补充
- 在经线上纬度差1度对应的实际距离是111.2018千米
- 在赤道上经度差1度对应的实际距离是111.3195千米
- 在除赤道外的其他纬线上,经度差1度对应的实际距离是111.3195*cos纬度
从理论上讲,全部的经线长度都相等,无论沿哪条经线南北极之间的距离都相等。
所以从理论上算,一条经线的长度=平均半径乘以圆周率=
π
\pi
πR=20016.321441933433千米。所以,在同一条经线上,纬度差1度对应的实际距离是
π
\pi
πR/180=111.20178578851908千米。
赤道周长: 40075020m。
因为赤道被分为了360度,所以在赤道上经度差1度对应的实际距离是40075020/360=111319.5m=111.3195km;对于纬度不为0的情况,在同一条纬线上,经度差1度对应的实际距离是111.3195
×
\times
×cos纬度。
(另一种理论计算结果应该是111.2018
×
\times
×cos纬度,因为平均半径R
×
\times
×cos纬度等于该纬度对应的小圆半径(一条纬线就是一个圈,小圆说的就是这个圈),1度所对应的弧长就是2
π
\pi
πR
×
\times
×cos纬度/360=111.2018
×
\times
×cos纬度)
总结,对于日常的学习生活来说,相差一度取111km、圆周率用3.14就够了,不必太过较真。
球坐标系与直角坐标系的转换
x = r sin θ cos ϕ y = r sin θ sin ϕ z = r cos θ ⟺ r = x 2 + y 2 + z 2 θ = arccos ( z r ) = arcsin ( x 2 + y 2 r ) = arctan ( x 2 + y 2 z ) ϕ = arccos ( x r sin θ ) = arcsin ( y r sin θ ) = arctan ( y x ) \begin{aligned} \begin{aligned} x & =r\sin\theta \cos\phi \\ y & =r\sin\theta \sin\phi \\ z & =r\cos\theta \end{aligned} \qquad \Longleftrightarrow \qquad \begin{aligned} r & =\sqrt{x^2+y^2+z^2} \\ \theta & =\arccos(\frac{z}{r})=\arcsin(\frac{\sqrt{x^2+y^2}}{r})=\arctan(\frac{\sqrt{x^2+y^2}}{z}) \\ \phi & =\arccos(\frac{x}{r\sin\theta})=\arcsin(\frac{y}{r\sin\theta})=\arctan(\frac{y}{x}) \end{aligned} \end{aligned} xyz=rsinθcosϕ=rsinθsinϕ=rcosθ⟺rθϕ=x2+y2+z2=arccos(rz)=arcsin(rx2+y2)=arctan(zx2+y2)=arccos(rsinθx)=arcsin(rsinθy)=arctan(xy)
径向距离 r ∈ [ 0 , + ∞ ] , 倾角 ( 天顶角 ) θ ∈ [ 0 , π ] , 方位角 ϕ ∈ [ 0 , 2 π ] 径向距离r \in [0,+\infty ],\ 倾角(天顶角)\theta \in [0,\pi ],\ 方位角\phi \in [0,2\pi] 径向距离r∈[0,+∞], 倾角(天顶角)θ∈[0,π], 方位角ϕ∈[0,2π]