题目
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
示例 1:
输入:[1,2,3,1] 输出:4 解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入:[2,7,9,3,1] 输出:12 解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。 偷窃到的最高金额 = 2 + 9 + 1 = 12 。
思路
这是一道经典的动态规划题目,同时也有贪心的思想;要求访问不相邻的元素的同时,使这些元素的和最大,当输入数组为空时,和为0,输入数组只有一个元素时,和为这个元素本身;元素大于2时,需要写出状态转移方程:dp[i]=Math.max(dp[i-1],dp[i-2]+nums[i]); 。
意思为访问第i户时,要么从第i-1户过来,这样第i户就不能访问,否则触发警报;要么从第i-2户过来,说明没有光顾第i-1户,为了使金额有最大值,这种情况下必须访问第i户;这时就要进行比较,取这两种情况中总金额高的一种,并继续往下遍历,直到完毕。
代码
class Solution {
public int massage(int[] nums) {
int l=nums.length;
if(l==0)
return 0;
if(l==1)
return nums[0];
int []dp=new int [l];
dp[0]=nums[0];
dp[1]=Math.max(nums[0],nums[1]);
for(int i=2;i<l;i++){
dp[i]=Math.max(dp[i-1],dp[i-2]+nums[i]);
//要么从上一户过来,该户跳过,要么从上上户过来,这户必须访问
}
return dp[l-1];
}
}