2.12 算法练习

1. 最长重复子数组

算法思路

1. 最大公共子数组就是最大公共连续子序列;
2. 不同于最长连续递增子序列那道题,此题是两个数组相互比较,所以将dp数组设定为二维数组,定义为分别以nums1[i]和nums2[j]结尾的两个子数组的最大公共子数组的长度。

注意点

虽然已经初始化,但是遍历要从i=0和j=0开始,不然0的情况进入不了循环,就不能跟result比较,导致最后result为0,结果错误。

代码

class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        // 分别以nums1[i]和nums2[j]结尾的两个子数组的最大公共子数组的长度
        int[][] dp = new int[nums1.length][nums2.length];
        for(int i = 0; i<nums1.length; i++){
            if(nums1[i] == nums2[0]) dp[i][0] = 1;
        }
        for(int j = 0; j<nums2.length; j++){
            if(nums1[0] == nums2[j]) dp[0][j] = 1;
        }

        int result = 0;
        for(int i = 0; i<nums1.length; i++){
            for(int j = 0; j<nums2.length; j++){
                if(nums1[i] == nums2[j] && i>0 && j>0){
                    dp[i][j] = dp[i-1][j-1]+1;
                }

                result = Math.max(result, dp[i][j]);
            } 
        }

        return result;    
    }
}

2. 最长公共子序列

算法思路

这题主要难在dp数组的定义:dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j],这样就可以将没有意义的dp[i]0]和dp[0][j]全部赋值为0.

注意点

1. 为了避免初始化的复杂,将dp[i][j]定义为:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j];
2. dp[i][j]定义为长度为 i 和 j 的字符串,这题就没有通过,我不知道为什么;
3. 这题居然不用再求一遍最大值dp[i][j],是因为数组越长,公共子序列当然就越长了。

代码

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        char[] c1 = text1.toCharArray();
        char[] c2 = text2.toCharArray();
        // 以c1[i-1]结尾和c2[i-2]结尾的两个数组的最大公共子序列长度
        int[][] dp = new int[c1.length+1][c2.length+1];
        

        int result = 0;
        for(int i = 1; i<=c1.length; i++){
            for(int j = 1; j<=c2.length; j++){
                if(c1[i-1] == c2[j-1]) dp[i][j] = dp[i-1][j-1]+1;
                else dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
                
                 result = Math.max(dp[i][j], result);
            }
        }

        return result;  
    }
}

3. 不相交的线

算法思路

1. 不相交的意思就是数组里的元素相对顺序不改变;
2. 做法和上题求最长公共子序列几乎完全一样。

注意点

代码

class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        // 以nums[i-1]和nums[j-1]结尾的两个数组的最大公共子序列长度为dp[i][j]
        int[][] dp = new int[nums1.length+1][nums2.length+1];
        for(int i = 1; i<=nums1.length; i++){
            for(int j = 1; j<=nums2.length; j++){
                if(nums1[i-1] == nums2[j-1]){
                    dp[i][j] = dp[i-1][j-1]+1;
                }else dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
            }
        }

        return dp[nums1.length][nums2.length];
    }
}

4. 最长连续递增序列

算法思路

递推公式包括两种情况:1. 从前面继续累加;
                                        2. 从当前位置重新累加。

注意点

result的初始化不能为0!!!而是nums[0],否则遇到全是负数的情况,会出现错误。

代码

class Solution {
    public int maxSubArray(int[] nums) {
        if(nums.length == 0) return 0;
       // dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]
       int[] dp = new int[nums.length];
       dp[0] = nums[0];
       int result = nums[0];

       for(int i = 1; i<nums.length; i++){
          dp[i] = Math.max(dp[i-1]+nums[i], nums[i]); // 延续或从头累加
          result = Math.max(dp[i], result);
       }
        return result;
    }
}

5. 判断子序列

算法思路

1. 本题相当于求最大公共子序列,若最大公共子序列长度等于 s 的长度,则 s 是 t 的子序列。

注意点

因为 s 里面不能删元素,而 t 里面可以删元素,所以不同于最大公共子序列,这里的dp[i][j] = dp[i][j-1]。

代码

class Solution {
    public boolean isSubsequence(String s, String t) {
        char[] c1 = s.toCharArray();
        char[] c2 = t.toCharArray();
        // dp[i][j]: 以c1[i-1]和c2[j-1]结尾的两个数组的最长公共子序列长度
        int[][] dp = new int[c1.length+1][c2.length+1];

        for(int i = 1; i<=c1.length; i++){
            for(int j = 1; j<=c2.length; j++){
                if(c1[i-1] == c2[j-1]) dp[i][j] = dp[i-1][j-1]+1;
                else dp[i][j] = dp[i][j-1]; // t字符串可以任意删除
            }
        }

        if(dp[c1.length][c2.length] == c1.length) return true;
        return false;
    }
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值