牛顿插值法

拉格朗日插值虽然容易计算,但若要增加一个节点时,全部基函数l_{i}(x)都需要重新计算

那么将L_{n}(x)改写成c_{0}+c_{1}(x-x_{0})+c_{2}(x-x_{0})(x-x_{1})+...+c_{n}(x-x_{0})...(x-x_{n-1})的形式,希望每加一个节点时,只附加一项上去即可

差商(均差)

定义

1阶差商

​​​​​  f[x_{i},x_{j}]=\frac{f(x_{i})-f(x_{j})}{x_{i}-x_{j}}(i\not=j,x_{i}\not=x_{j})

2阶差商

f[x_{i},x_{j},x_{k}]=\frac{f[x_{i},x_{j}]-f[x_{j},x_{k}]}{x_{i}-x_{k}}(i\not=k)

(k+1)阶差商

f[x_{0},...,x_{k+1}]=\frac{f[x_{0},x_{1},...,x_{k}]-f[x_{1},...,x_{k},x_{k+1}]}{x_{0}-x_{k+1}}

性质

  • 均差与节点的排列次序无关,具有对称性,即

f[x_{0},x_{1},...,x_{k}] = f[x_{1},x_{0},x_{2},...,x_{k}]

  • k阶均差表示为函数值f(x_{0}),...,f(x_{k})的线性组合,即:

f[x_{0},...,x_{k}] = \sum_{j=0}^{k}\frac{f(x_{j})}{\omega _{k+1}(x_{j})}

\omega_{n+1}=\prod_{i=0}^{n}(x-x_{i})

  • 若f(x)在[a,b]上存在n阶导数,且节点x_{0},...,x_{n}\in [a,b]且n阶均差与n阶导数关系如下:

f[x_{0},...,x_{m}]=\frac{f^{(n)}(\xi )}{n!},\xi\in[a,b]

差商计算可列差商表如下

x_{i}f(x_{i})一阶差商二阶差商三阶差商
x_{0}f(x_{0})
x_{1}f(x_{1})f[x_{0},x_{1}]
x_{2}f(x_{2})f[x_{1},x_{2}]f[x_{0},x_{1},x_{2}]
x_{3}f(x_{3})f[x_{2},x_{3}]f[x_{1},x_{2},x_{3}]f[x_{0},x_{1},x_{2},x_{3}]
...............

牛顿插值多项式

N_{n}(x)=a_{0}+a_{1}(x-x_{0})+a_{2}(x-x_{0})(x-x_{1})+...+a_{n}(x-x_{0})...(x-x_{n-1})

a_{k}=f[x_{0},...,x_{k}](k=0,1,...,n)

牛顿插值多项式的系数a_{k}就是均差表中的各阶均差的第一个值,它比拉格朗日插值更节省计算量,且便于程序设计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

怪叫熊灬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值