数学原理:
从第一个数开始遍历,到找到单调递减的第一个数(即单调递增的最后一个数),则删除,若无单调递减子序列,则删掉最后一个非递减序列的数;每找到一个就又从头开始。即每做一次删数,就是一次贪心选择,删掉此数剩下的数为组成最小,经过证明,此结论正确。
eg:
42135
单调递减的第一个数为第一个数为4,删掉得到2135
之后单调递减的第一个数为2,删掉得到135
不存在单调递减序列,则删除最后一个数5
需要注意的是:2001删除一个数后应该为1,而不是001,需要进行处理
#include <algorithm>
#include <iostream>
using namespace std;
int shanshu(string &a, int k);
int main() {
string st;
int n, startIndex = 0;
cin >> st >> n;
n = shanshu(st, n);
for (int i = 0; i < n; i++) {
if (st[i] == '0') {
startIndex++;
}
}
for (int i = startIndex; i < n; i++) {
cout << st[i];
}
return 0;
}
int shanshu(string &a, int k) {
int n = a.size(), j = 0;
while (k > 0) {
for (int i = 0; i < n; i++) {
if (a[i] > a[i + 1]) {
for (int j = i; j < n; j++) {
a[j] = a[j + 1];
}
n--;
break; // 忘记退出循环了
} else if (i == n - 1) {
n--;
break;
}
}
k--;
}
return n;
}