蓝桥冲刺31日,冲刺第三日打卡java题解

目录

第一题:巧合年龄

第二题:纸牌三角形

第三题:取球游戏


 第一题:巧合年龄精选项目课程_IT热门课程_蓝桥云课课程 - 蓝桥云课

题目:

小明和他的表弟一起去看电影,有人问他们的年龄。小明说:今年是我们的幸运年啊。我出生年份的四位数字加起来刚好是我的年龄。表弟的也是如此。已知今年是 2014 年,并且,小明说的年龄指的是周岁。

请推断并填写出小明的出生年份。

解析:每一位数值的和总和为当前年龄,比如:1999-->1+9+9+9,说明现在28岁

而题目给定:今年为2014年,那么n年前就是2014-n年出生,出生年份的各数字之和等于n

坑点:此题有两个解,题目中给定小明和表弟都满足,所以取值更小那个(即出生早的)

代码放下面了:

public class 年龄巧合 {
    public static void main(String[] args) {
        int k=0,a,b,c,d;//k计算是第几个满足的年份
        for (int i=2013;i>1900;i--){
            a=i%10;
            b=(i/10)%10;
            c=(i/100)%10;
            d=i/1000;
            if (a+b+c+d==2014-i){
                k++;
            }
            if (k==2){//第二次满足就结束
                System.out.println(i);
                return;
            }
        }
    }
}

(ps:为什么不能是同一年出生?我不理解)

第二题:纸牌三角形精选项目课程_IT热门课程_蓝桥云课课程 - 蓝桥云课

 

怎么说呢,就是简单的全排列问题,如果不会全排列的话,可以网上搜一下视频教程

和经典的八皇后问题很像

public class 全排列纸牌三角形 {
        private static int count = 0;
        static  int temp;
        public static void main(String[] args) {
            int[] c = {1,2,3,4,5,6,7,8,9};
            hs(c, 0);
            System.out.println(count/6);//去除旋转和镜像
        }
        static void hs(int[] c, int n) {
            int len = c.length;
            if(n == len - 1) {
                int A = c[0] + c[1] + c[2] + c[3];
                int B = c[3] + c[4] + c[5] + c[6];
                int C = c[6] + c[7] + c[8] + c[0];
                if(A == B && B == C) {
                    System.out.println(c[0]+" "+c[3]+" "+c[6]);
                    count++;
                }
            }else{
                for(int i = n; i < len; i++){
                    aa(c, n, i);
                    hs(c, n + 1);
                    aa(c, n, i);
                }
            }
        }

        static void aa(int[] c, int i, int j){
            temp = c[i];
            c[i] = c[j];
            c[j] = temp;
        }
    }

第三题:取球游戏精选项目课程_IT热门课程_蓝桥云课课程 - 蓝桥云课

 这题是博弈论

奈何小怂没学过这玩意,想的是dp方案解

解析:

按照每一次剩余求个数来求取必胜局或者必败局

比如:现在剩余1个  轮到A取了

那么B的上一次取可以是 2取走1  4取走3  8取走7  9取走8

也就是说  当剩余个数为 2  4  8  9的时候,轮到A取则B必败,轮到B取则A必败

依次类推,写出一个dp关系:

if(dp[i]=0)

dp[i+1]=1;dp[i+3]=1;dp[i+7]=1;dp[i+8]=1;

import java.util.Scanner;

public class 取球游戏 {
    public static void main(String[] args) {
        Scanner sc=new Scanner(System.in);
        int n=sc.nextInt();
        int[]arr=new int[n];
        int []dp=new int[10008];
        for (int i=1;i<10000;i++){
            if (dp[i]==0){
                dp[i+1]=1;
                dp[i+3]=1;
                dp[i+7]=1;
                dp[i+8]=1;
            }
        }
        for (int i=0;i<n;i++){
            arr[i]=sc.nextInt();
            System.out.println(dp[arr[i]]);
        }
    }
}

  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
树上选点是蓝桥Java题目中的一种类型,通常需要在给定的树结构中选择一个或多个节点作为目标节点,并进行相应的操作。下面是一个简单的树上选点蓝桥Java题解的示例: 题目描述: 给定一棵有N个节点的树,每个节点上都有一个非负整数值。现在需要选择一些节点,使得选择的节点的值之和最大,且所选节点不能相邻(即选了一个节点,则其父节点和子节点都不能选)。请编写一个程序,计算出最大的节点值之和。 解题思路: 这是一个典型的动态规划问题。我们可以定义一个数组dp,其中dp[i]表示以第i个节点为根节点的子树中所选节点的最大值之和。对于每个节点i,有两种情况: 1. 选择节点i:则其子节点都不能选,所以dp[i] = val[i] + dp[grandchild1] + dp[grandchild2] + ... 2. 不选择节点i:则其子节点可以选择或不选择,所以dp[i] = max(dp[child1], dp[child2], ...) 根据以上思路,我们可以使用递归或者迭代的方式来计算dp数组。最终,所求的最大值即为dp,其中1表示根节点。 代码示例: ```java public class TreeSelectPoint { public static void main(String[] args) { int[] values = {0, 1, 2, 3, 4, 5}; // 节点值数组,下标从1开始 int[][] edges = {{1, 2}, {1, 3}, {2, 4}, {2, 5}}; // 树的边关系数组 int n = values.length - 1; // 节点个数 int[] dp = new int[n + 1]; // 动态规划数组 // 构建树的邻接表 List<List<Integer>> adjacencyList = new ArrayList<>(); for (int i = 0; i <= n; i++) { adjacencyList.add(new ArrayList<>()); } for (int[] edge : edges) { int u = edge[0]; int v = edge[1]; adjacencyList.get(u).add(v); adjacencyList.get(v).add(u); } dfs(1, -1, values, adjacencyList, dp); // 从根节点开始进行深度优先搜索 System.out.println(dp[1]); // 输出最大节点值之和 } private static void dfs(int cur, int parent, int[] values, List<List<Integer>> adjacencyList, int[] dp) { dp[cur] = values[cur]; // 初始化当前节点的dp值为节点值 for (int child : adjacencyList.get(cur)) { if (child != parent) { // 避免重复访问父节点 dfs(child, cur, values, adjacencyList, dp); dp[cur] += dp[child]; // 更新当前节点的dp值 } } } } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值