一个数能被3整除等价于这个数各位相加能被3整除,的证明

一个大家都从小学都知道的定理:如何判断一个数能不能被3整除,只要将这个整数的各位相加,如果该和数能被3整除,则原数是3的倍数。
那是为什么呢?我想老师一定没有告诉你!
揭秘时刻!


首先带大家认识一下同余
同余的定义:给定一个正整数m,两个整数a,b叫做模m同余,如果a-b被m整除,或m|a-b,就记作a≡b(mod m)。否则,叫做模m不同余,记作a≠b(mod m)
其中,m|a-b表示的意思是a-b能被m整除
这句话简单说就是a%m==b%m


同余的判断
设m是一个正整数,设a,b是两个整数,则a≡b(mod m)的充分必要条件是存在一个整数q使得a=b+q·m.
是不是很容易理解呢,就是a和b相差q个m


一个重要的定理
设m是一个正整数,则a1,a2,b1,b2是4个整数,如果a1≡b1(mod m),a2≡b2(mod m)

1)a1+a2≡b1+b2(mod m)
2)a1·a2≡b1·b2(mod m)
证明:
由同余的判断可以知道
存在整数q1,q2使得a1=b1+q1·m,a2=b2+q2·m
从而
a1+a2=b1+b2+(q1+q2)·m
a1·a2=b1·b2+(q1·m)·b2+b1·(q2·m)+(q1·m)·(q2·m)=b1·b2+(q1+q2+q1·q2·m)·m
所以证毕


再抛出一个重要的定理(最后一个了!)
在这里插入图片描述
证明:
重复利用上一个定理,我想你能明白!!><


OK
在这里插入图片描述


就是这样了
自己练习一下9|n的充分必要条件吧!!!
如何判断一个数能不能被9整除,只要将这个整数的各位相加,如果该和数能被9整除,则原数是9的倍数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开心星人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值