二分查找
二分查找的大体模板很简单,但是上课的时候看到结束条件 下边界和上边界有时候相等有时候不等;mid有时候加一有时候不加一 ;本来感觉没什么太大的意义;后来问了百度才知道 ,细节是魔鬼!
二份查找的基本框架
int Search(int *num, int target) {
int left = 0, right = ...;
while(...) {
int mid = (right + left) / 2;
if (num[mid] == target) {
...
} else if (num[mid] < target) {
left = ...
} else if (num[mid] > target) {
right = ...
}
}
return ...;
下面从两个方面细说
寻找一个数、寻找边界;
寻找一个数
问题大概是
搜索一个数,如果存在,返回其索引,否则返回 -1。
int Search(int*num, int target) {
int left = 0;
int right = num.length - 1; //
while(left <= right) { // 注意
int mid = (right + left) / 2;
if(num[mid] == target)
return mid;
else if (num[mid] < target)
left = mid + 1; // 注意
else if (num[mid] > target)
right = mid - 1; // 注意
}
return -1;
}
有两个值得注意的细节
1是结束条件 left <= right 因为我们right = num.length - 1;即r=最后一个元素 当然前提是从num【0】开始输入的; left <= right 就是遍历的区间【l,r】是闭区间;
如果是 left < right就是开区间【l,r);显然最后一个元素别遗漏了;但是如果我right = num.length;那么就代表开区间【l,r)r是最后一个元素再后一个;
这样子就可以把最后一个元素包括了
2 mid是否加一
本题因为 num[mid]有三种情况 所以当num[mid]=目标的时候 就输出了;也就是说num[mid]这个值已经被遍历了不用再继承了;
但是寻找边界的时候情况又不同;
寻找边界
左边界
int left(int*nums, int target) {
if (nums.length == 0) return -1;
int left = 0;
int right = nums.length; // 注意
while (left < right) { // 注意
int mid = (left + right) / 2;
if (nums[mid] == target) {
right = mid;
} else if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] > target) {
right = mid; // 注意
}
}
return left;
}
需要注意的细节
1 while(left < right) 因为r是最后一个元素的下一个;所以用开区间就可以;
2 left = mid + 1,right = mid 因为我们的搜索区间是 [left, right) 左闭右开,所以当 nums[mid] 被遍历之后,下一步的搜索区间应该去掉 mid 分割成两个区间,即 [left, mid) 或 [mid + 1, right)。刚好把mid给去掉
3
if (nums[mid] == target)
right = mid;
意思是把上边界改成mid 因为 mid已经符合条件了 但不一定是最左边的边界;所以这样从left到mid来遍历,看有没有其他边界;没有或者有都输出left 有统一性;因为有另一个边界的时候和没有 循环结束的条件都是left=right;这样子就找到最左边的边界了
下面给出例题
是寻找边界的变例 区间由整数集变成连续的小数集
HDU 1551 Cable master
将n根网线切成k段相同长度的网线,问可切成的最长长度是多少;
思路:利用二分发查找答案,每次偏右查找(因为要查找大的)也就是查找右边界;
sum = sum/k;
double l = 0,r = sum;
while(fabs(l-r)>exp)
{
double mid = (l+r)/2;
if(judge(mid))
l = mid+1;
else
r = mid;
}
printf("%.2f\n",l-1);
}
return 0;
}
int judge(double s)
{
int cnt = 0;
for(int i = 0; i<n; i++)
{
cnt+=(int)(a[i]/s);
}
if(cnt>=k) return 1;
return 0;
}
1遍历区间是有小数的形式 所以不能用大于或者大于等于的这种形式 这样不够精确
2因为我们初始化 right = sum;
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left +10e-6< right)
同时也决定了 left = mid 和 right = mid
因为我们需找到 target 的最右侧索引
所以当 cnt== target 时不要立即返回
而要收左侧边界以锁定右侧边界
又因为收左侧边界时必须 left = mid 而不是left = mid+1;这是因为区间是连续的 不是离散的整数;
3返回 left
返回right可能会出错 可能恰好left+10e-6越界了;
细节决定ac!