数字图像处理(第三版)第4章 频率域滤波

4.1基本概念

4.1.1 复数

复数C定义如下:C=R+jI
R和I是实数,j是一个等于-1的虚数。R是实部,I是虚部。共轭复数表示为 C*=R-jI,复数R+jI是复平面直角坐标系的点(R,I)

4.1.2 傅里叶级数

具有周期T的t的周期函数f(t)可以被适当描述成乘以适当的系数的正弦和余弦和。这个和就是傅里叶级数。具有如下形式:在这里插入图片描述其中,在这里插入图片描述

4.1.3 冲激及其取样特性

连续变量t在t=0处的单位冲激表示为在这里插入图片描述并且满足在这里插入图片描述物理上,如果我们把t解释是时间,上式可以看作一个幅度无限、持续时间为0、具有单位面积的尖峰信号。一个冲激具有如下取样特性在这里插入图片描述

4.1.4 连续变量函数的傅里叶变换

傅里叶变换由下式定义在这里插入图片描述,f(t)的傅里叶变换可表示为在这里插入图片描述
通过傅里叶反变换f(t)可写为在这里插入图片描述
通过欧拉公式,上面倒数第二关公式可改写为在这里插入图片描述
如果f(t)是实数,其变换通常是复数。

4.1.5 卷积

具有连续变量t的两个连续函数f(t)和h(t)的卷积,表示为在这里插入图片描述
负号表示翻转,t是一个函数滑过另一个函数的位移,假定函数从负无穷扩展到正无穷。从下式开始在这里插入图片描述
可以得到在这里插入图片描述
将t所在域称为空间域,将u所在域称为频率域。空间域中的两个函数的卷积的傅里叶变换等于两个函数的傅里叶变换在频率域中的乘积。

4.2 取样和取样函数的傅里叶变换

4.2.1 取样

在用计算机处理之前,连续函数必须转换为离散值序列,这是由取样和量化来完成的。考虑一个连续函数f(t),希望以均匀间隔取样,模拟取样的一种方法是用一个单位间隔的冲激串作为取样函数去乘以f(t),即在这里插入图片描述
这一和式的每一个分量都是由在该处f(t)的值加权后的冲激。

4.2.2 取样函数的傅里叶变换

令F(u)代表f(t)的傅里叶变换。由卷积定理知,取样后函数的傅里叶变换是在这里插入图片描述
其中在这里插入图片描述
F(u)和S(u)的卷积是
在这里插入图片描述
下图是前面结果的一个图示总结
在这里插入图片描述

4.2.3 取样定理

以原点为中心的有限区间[-u,u]之外的频率值,其傅里叶变换为零的函数f(t)称为带限函数。下图就是这样一个函数在这里插入图片描述
如果1/2T>u,或者在这里插入图片描述则可保证有足够大的间距。该公式指出,如果以超过函数最高频率的两倍的取样率来获得样本,连续的带限函数可以完全从它的样本集来恢复。这就是取样定理。取样定理规定了取样率必须超过奈奎斯特取样率。

4.2.4 混淆

以低于奈奎斯特取样率取样的最终效果是周期重叠,不管用什么滤波器,都无法分离出变换的一个单周期。使用下图b中的滤波器,结果如c图所示,该变换被来自邻近周期的频率破坏了,反变换又产生了t的一个破坏的函数。由函数欠取样导致的这种效果就是频率混淆,简称混淆。
在这里插入图片描述

4.2.5 由取样后的数据重建(复原)函数

下式概括了一个带限函数使用频率域方法由其样本完美复原的过程。在这里插入图片描述
经过相关计算,可导出f(t)的如下空间域表达式:在这里插入图片描述
上式表明,完美重建的函数是用取样值加权的sinc函数的无限和,即重建的函数恒等于在多个T的整数增量处的样本值。

4.3 单变量的离散傅里叶变换(DFT)

如果函数f(x)由f(t)以T为单位间隔取样后的M个样本组成,则包含集合{ f(x) },x=0,1,…M-1的记录的持续时间是 t=MT
在这里插入图片描述
由DFT的M个分量跨越整个频率范围是
在这里插入图片描述
由上式可以看出,DFT的频率分辨率取决于f(t)被取样的持续时间,且DFT跨越的频率范围取决于取样间隔。

4.4 两个变量的函数的扩展

4.4.1 二维冲激及其取样特性

两个连续变量t和z的冲激定义为下式在这里插入图片描述在这里插入图片描述,二维冲激在积分下呈现了取样特性在这里插入图片描述
对于离散变量x和y,二维离散冲激定义为在这里插入图片描述其取样特性为在这里插入图片描述
对于一个位于坐标(x,y)外的冲激,其取样特性为在这里插入图片描述

4.4.2 二维连续傅里叶变换对

令f(t,z)是两个变量t和z的连续函数。其二维连续傅里叶变换由以下两个表达式给出:在这里插入图片描述
下图显示了一个一维情况的二维函数。给出如下结果:在这里插入图片描述
其幅度由下式给出:
在这里插入图片描述
下图显示了关于原点的谱的一部分。在谱中零的位置与T和Z的值成反比,T和Z越大,谱将变得更收缩,反之亦然。在这里插入图片描述

4.4.3 二维取样和二维取样定理

类似一维情况中的方式,二维取样可用取样函数建模:在这里插入图片描述
其中,T和Z是连续函数f(t,z)沿t轴和z轴的样本间的间隔。上式描述了沿着两个轴无限扩展的周期冲激的集合。如果区间[-Um,Um]和区间
[-Vm,Vm]建立的矩形之外的傅里叶变换是零,则f(t,z)是带限函数。即F(u,v)=0,|u|>=Um且|v|>=Vm。二维取样定理表明,如果取样间隔满足在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
则连续带限函数f(t,z)可以由其一组样本无误地恢复。

4.4.4 图像中的混淆

下图显示了对棋盘取样的结果
在这里插入图片描述
c图是严重混淆的图像
当一幅图像被减小时,通常混淆效应将变得更坏。在这里插入图片描述
上面是对a图像不断进行相应操作得到的结果。

4.4.5 二维离散傅里叶变换及其反变换

二维傅里叶变换(DFT)如下:
在这里插入图片描述
可以用傅里叶反变换得到f(x,y)
在这里插入图片描述

4.5 二维离散傅里叶变换的一些性质

4.5.1 空间和频率间隔的关系

离散频率域变量的间隔由在这里插入图片描述在这里插入图片描述看出。

4.5.2 平移和旋转

在这里插入图片描述
傅里叶变换满足上述平移特性,也可使用极坐标来证明。

4.5.3 周期性

二维傅里叶变换及其反变换在u和v方向上是无限周期的
在这里插入图片描述
变换及其反变换的周期性在基于DFT算法的实现上是重要的特性。
在这里插入图片描述
上图显示了其函数的周期性。

4.5.4 傅里叶谱和相角

二维DFT一般是复函数,用极坐标表示如下在这里插入图片描述
幅度是
在这里插入图片描述
称为傅里叶谱
在这里插入图片描述
该图像谱定义在[0,255]。从a图经过不断变换,在d图中很容易观察图像细节。

4.5.5 二维卷积定理

二维循环卷积表达式如下:
在这里插入图片描述
二维卷积定理由下式给出:
在这里插入图片描述
双箭头用来表示表达式左右两边组成了傅里叶变换对。在这里插入图片描述

4.6 频率域滤波

4.6.1 频率域滤波基础

频率域滤波由修改的一幅图像的傅里叶变换然后计算其反变换得到处理后的结果组成。基本滤波公式有如下形式在这里插入图片描述
当滤波器通过虚线框起来的图像区域上方时,它将包围该图像的一部分及其右上方周期图像底部的一部分。
在这里插入图片描述

4.6.2 频率域滤波步骤小结

(1)得到填充参数P和Q。
(2)对f(x,y)进行填充0,形成PxQ的新图像。
(3)将新图像移到变换中心
(4)生成一个实的、对称的滤波函数H(u,v)
(5)得到处理后的图像
在这里插入图片描述
(6)从图像左上角提取MxN区域,得到最终结果g(x,y)

4.7 使用频率域滤波器平滑图像

考虑三种类型的低通滤波器:理想滤波器、布特沃斯滤波器和高斯滤波器。这三种滤波器涵盖了从非常尖锐到非常平滑的滤波范围。

4.7.1 理想低通滤波器

在以原点为圆心,以D0为半径的圆内,无衰减的通过所有频率,而在圆外“切断”所有频率的二维低通滤波器,称为理想低通滤波器(ILPF)。由下面函数确定:
在这里插入图片描述
其中,在这里插入图片描述
对于一个理想低通滤波器(ILPF)横截面,在H(u,v)=1和H(u,v)=0之间的过渡点称为截至频率。
在这里插入图片描述
下图分别显示了一幅测试模式图像及其傅里叶谱。在这里插入图片描述

4.7.2 布特沃斯低通滤波器

截至频率位于距原点D0处的n阶布特沃斯低通滤波器(BLPF)的传递函数为在这里插入图片描述
下图显示了该BLPF函数的透视图、图像显示和径向剖面图。
在这里插入图片描述
BLPF并没有在通过频率和滤除频率之间给出明显截止的尖锐的不连续性。
下图是使用布特沃斯低通滤波器平滑图像的过程。
在这里插入图片描述

4.7.3 高斯低通滤波器

一维高斯低通滤波器(GLPF)的二维形式如下:
在这里插入图片描述
下表说明了各个低通滤波器的性质。
在这里插入图片描述
下面是使用GLPF进行平滑图像的过程
在这里插入图片描述
请尝试比较这两个图之间的差异。

4.8 选择性滤波

4.8.1 带阻滤波器和带通滤波器

下表给出了理想、布特沃斯和高斯带阻滤波器的表达式。在这里插入图片描述
一个带通滤波器可由带阻滤波器得到
在这里插入图片描述
下图显示了一个高斯带通滤波器
在这里插入图片描述

4.8.2 陷波滤波器

陷波滤波器拒绝事先定义的关于频率矩形中心的一个邻域的频率。一个中心位于(u,v)的陷波在位置(-u,-v)必须有一个对应的陷波。一般形式为
在这里插入图片描述
距离的计算由下式实现
在这里插入图片描述

4.9 实现

4.9.1 二维DFT的可分性

二维DFT可分成一维变换。
在这里插入图片描述
f(x,y)的二维DFT可通过计算f(x,y)的每一行的一位变换,然后沿着结果的每一列计算一维变换得到。

4.9.2 用DFT算法计算IDFT

经过下式在这里插入图片描述
如果把F*(u,v)带入计算二维傅里叶变换,结果是MN f*(x,y)。取共轭并将结果乘以1/MN,将得到f(x,y),它是F(u,v)的反变换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只小小程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值