堆排序算法

1、什么是堆

	堆的结构可以分为大根堆和小根堆,是一个完全二叉树,而堆排序是根据堆的这种数据结构设计的一种排序

2、大根堆和小根堆

在这里插入图片描述
性质:每个结点的值都大于其左孩子和右孩子结点的值,称之为大根堆;每个结点的值都小于其左孩子和右孩子结点的值,称之为小根堆。

3、 堆排序基本步骤

基本思想:

  • 1.首先将待排序的数组构造成一个大根堆,此时,整个数组的最大值就是堆结构的顶端

  • 2.将顶端的数与末尾的数交换,此时,末尾的数为最大值,剩余待排序数组个数为n-1

  • 3.将剩余的n-1个数再构造成大根堆,再将顶端数与n-1位置的数交换,如此反复执行,便能得到有序数组

构造堆:

	将无序数组构造成一个大根堆(升序用大根堆,降序就用小根堆)

4、代码

代码中主要两个方法:

1、将待排序数组构造成一个大根堆(元素上升)

2、固定一个最大值,将剩余的数再构造成一个大根堆(元素下降)

    //堆排序
    public static void heapSort(int[] arr) {
        //构造大根堆
        heapInsert(arr);
        int size = arr.length;
        while (size > 1) {
            //固定最大值
            swap(arr, 0, size - 1);
            size--;
            //构造大根堆
            heapify(arr, 0, size);
 
        }
 
    }
 
    //构造大根堆(通过新插入的数上升)
    public static void heapInsert(int[] arr) {
        for (int i = 0; i < arr.length; i++) {
            //当前插入的索引
            int currentIndex = i;
            //父结点索引
            int fatherIndex = (currentIndex - 1) / 2;
            //如果当前插入的值大于其父结点的值,则交换值,并且将索引指向父结点
            //然后继续和上面的父结点值比较,直到不大于父结点,则退出循环
            while (arr[currentIndex] > arr[fatherIndex]) {
                //交换当前结点与父结点的值
                swap(arr, currentIndex, fatherIndex);
                //将当前索引指向父索引
                currentIndex = fatherIndex;
                //重新计算当前索引的父索引
                fatherIndex = (currentIndex - 1) / 2;
            }
        }
    }
    //将剩余的数构造成大根堆(通过顶端的数下降)
    public static void heapify(int[] arr, int index, int size) {
        int left = 2 * index + 1;
        int right = 2 * index + 2;
        while (left < size) {
            int largestIndex;
            //判断孩子中较大的值的索引(要确保右孩子在size范围之内)
            if (arr[left] < arr[right] && right < size) {
                largestIndex = right;
            } else {
                largestIndex = left;
            }
            //比较父结点的值与孩子中较大的值,并确定最大值的索引
            if (arr[index] > arr[largestIndex]) {
                largestIndex = index;
            }
            //如果父结点索引是最大值的索引,那已经是大根堆了,则退出循环
            if (index == largestIndex) {
                break;
            }
            //父结点不是最大值,与孩子中较大的值交换
            swap(arr, largestIndex, index);
            //将索引指向孩子中较大的值的索引
            index = largestIndex;
            //重新计算交换之后的孩子的索引
            left = 2 * index + 1;
            right = 2 * index + 2;
        }
 
    }
    //交换数组中两个元素的值
    public static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值