1 模拟商品抢购和并发的效果
1.1 数据库结构(MySQL)
DROP DATABASE IF EXISTS rush_to_purchase_db;
2
CREATE DATABASE rush_to_purchase_db;
3
USE rush_to_purchase_db;
4
5
/* 产品信息表 */
6
CREATE TABLE t_product(
7
id INT(12) NOT NULL AUTO_INCREMENT COMMENT '商品编号',
8
product_name VARCHAR(60) NOT NULL COMMENT '商品名称',
9
stock INT(10) NOT NULL COMMENT '库存',
10
price DECIMAL(16,2) NOT NULL COMMENT '单价',
11
VERSION INT(10) NOT NULL DEFAULT 0 COMMENT '版本号',
12
note VARCHAR(256) NULL COMMENT '备注',
13
PRIMARY KEY(id)
14
);
15
/* 购买信息表 */
16
CREATE TABLE t_purchase_record(
17
id INT(12) NOT NULL AUTO_INCREMENT COMMENT '记录编号',
18
user_id INT(12) NOT NULL COMMENT '用户编号',
19
produce_id INT(12) NOT NULL COMMENT '商品编号',
20
price DECIMAL(16,2) NOT NULL COMMENT '价格',
21
quantity INT(12) NOT NULL COMMENT '数量',
22
SUM DECIMAL(16,2) NOT NULL COMMENT '总价',
23
purchase_time TIMESTAMP NOT NULL DEFAULT NOW() COMMENT '购买时间',
24
note VARCHAR(512) NOT NULL COMMENT '备注',
25
PRIMARY KEY(id)
26
);
1.2 创建SpringBoot的SSM项目,实现购买Action功能
(1)Mapper
public interface ProductMapper {
2
@Select("SELECT id,product_name AS productName,stock,price,VERSION,note FROM t_product where id=#{id}")
3
Product findById(long id);
4
@Update("update t_product set stock=stock- #{quantity} where id=#{id}")
5
void descreaseStock(@Param("id")long id, @Param("quantity")long quantity);
6
}
7
8
public interface PurchaseRecordMapper {
9
@Options(keyProperty = "id", useGeneratedKeys = true)
10
@Insert("INSERT INTO t_purchase_record(user_id,produce_id,price,quantity,SUM,purchase_time,note) VALUES(#{userId},#{productId},#{price},#{quantity},#{sum},#{purchaseTime},#{note})")
11
void add(PurchaseRecord record);
12
}
(2)Service
@Service
2
public class PurchaseServiceImpl implements PurchaseService {
3
@Autowired
4
private ProductMapper productDb;
5
@Autowired
6
private PurchaseRecordMapper recordDb;
7
@Transactional
8
public boolean purchase(long userId, long productId, long quantity) {
9
Product product = productDb.findById(productId); //查库存
10
if(product.getStock()<quantity) { //如果商品库存少于购买数量
11
return false; //返回失败
12
}
13
productDb.descreaseStock(productId, quantity); //减库存
14
PurchaseRecord record = initPurchaseRecord(userId, product, quantity);
15
recordDb.add(record); //保存购买记录
16
return true;
17
}
18
private PurchaseRecord initPurchaseRecord(long userId, Product product, long quantity) {
19
PurchaseRecord pr = PurchaseRecord.builder()
20
.userId(userId)
21
.productId(product.getId())
22
.price(product.getPrice())
23
.quantity(quantity)
24
.sum(product.getPrice()*quantity)
25
.purchaseTime(new Timestamp(System.currentTimeMillis()))
26
.note("")
27
.build();
28
return pr;
29
}
30
}
(3)Controller
@Controller
2
public class PurchaseController {
3
@Autowired
4
private ProductService productService;
5
@Autowired
6
private PurchaseService purchaseService;
7
@GetMapping("/index") //jsp测试页
8
public String index() {
9
return "index";
10
}
11
@PostMapping("/api/purchase") //处理抢购请求
12
@ResponseBody
13
public JsonResult purchase(long userId, long productId, long quantity) {
14
boolean ok = purchaseService.purchase(userId, productId, quantity);
15
return new JsonResult(ok, ok?"抢购成功":" 抢购失败");
16
}
17
}
18
19
@Data
20
@AllArgsConstructor
21
@NoArgsConstructor
22
class JsonResult{
23
private boolean ok;
24
private String message;
25
}
(4)使用jQuery Ajax模拟抢购过程
<script src="static/jquery-3.4.1.min.js"></script>
2
<script>
3
$(function(){
4
$("#rush2buy").click(function(){ //#rush2buy 是模拟抢购的按钮
5
for(var i=1; i<=400; i++){ //循环执行500次
6
var params = {userId:1, productId:1, quantity: 3};
7
$.post("api/purchase", params
8
, function(result){
9
console.log(new Date().getTime()); //记录每次执行完的时间
10
}
11
);
12
}
13
});
14
})
15
</script>
数据库发生超发现象:
2 线程同步方案
上述的超发现象,归根到底在于数据库时被多个线程同时访问的,在没有加锁的情况下,上述代码并不是线程安全的。
最简单的办法是为业务方法添加线程同步“synchroized”关键字,确保同一个时间只有一个线程进入操作。
@Service
2
public class PurchaseServiceImpl implements PurchaseService {
3
......
4
@Transactional
5
public synchronized boolean purchase(long userId, long productId, long quantity) {
6
Product product = productDb.findById(productId);
7
if(product.getStock()<quantity) {
8
return false;
9
}
10
productDb.descreaseStock(productId, quantity);
11
PurchaseRecord record = initPurchaseRecord(userId, product, quantity);
12
recordDb.add(record);
13
return true;
14
}
15
}
线程同步把抢购业务方法变成了单线程执行,能保证不会发生超发现象,但随着并发量增加性能下降较大。
3 数据库“悲观锁”方案
如果一个数据库事务读取到产品库存后,就直接把该行数据锁定,不允许其他线程读写,直到事务完成商品库存的减少在释放锁,就不会出现并超发现象了。这种处理高并发的数据库锁称为悲观锁。具体操作如下:
修改上述Mapper中的查询语句,在每次查询商品库存的时候加上更新锁。
public interface ProductMapper {
2
@Select("SELECT id,product_name AS productName,stock,price,VERSION,note FROM t_product where id=#{id} for update")
3
Product findById(long id);
4
......
5
}
注意上述语句中“SELECT id,product_name AS productName,stock,price,VERSION,note FROM t_product where id=#{id} for update” 中的“for update”称为更新锁,在数据库事务执行过程中,它会锁定查询出来的数据,其他事务不能再对其进行读写,知道该事务完成才会只放锁,这样能避免数据不一致了。
经过上述修改,并发执行后就不会超发了。
但由于加锁,会导致实际代码的执行时间有所增加。
4 “乐观锁”方法
(1)乐观锁的概念
悲观锁虽然可以解决高并发下的超发现象,却并非高效方案,另一些开发者会采用乐观锁方案。乐观锁并非数据库加锁和阻塞的解决方案,乐观锁把读取到的旧数据保存下来,等到要对数据进行修改的时候,会先把旧数据与当前数据库数据进行比较,如果旧数据与当前数据一致,我们就认为数据库没有被并发修改过,否则就认为数据已经被其它并发请求修改,当前的事务回滚,不再修改任何数据。在实际操作中,乐观锁通常需要在数据表中增加“数据版本号”这样一个字段,以标识当前数据和旧数据是否一致,每次修改数据后“数据版本号”要增加。
(2)乐观锁的使用
修改减少库存的Mapper方法,每次减少库存的时候同时修改数据的版本号version
public interface ProductMapper {
2
//不使用悲观锁
3
@Select("SELECT id,product_name AS productName,stock,price,VERSION,note FROM t_product where id=#{id}")
4
Product findById(long id);
5
//2 乐观锁
6
@Update("update t_product set stock=stock- #{quantity} version=version+1 where id=#{id} and version=#{version}")
7
int descreaseStock(@Param("id")long id, @Param("quantity")long quantity, @Param("version")long version);
8
}
修改业务方法,每次修改库存时检查是否修改到,如果没改到数据“result==0”则表示数据版本号已经变更,有其他并发请求改过库存,放弃当前操作。
@Service
2
public class PurchaseServiceImpl implements PurchaseService {
3
......
4
5
//2 乐观锁
6
@Transactional
7
public boolean purchase(long userId, long productId, long quantity) {
8
Product product = productDb.findById(productId);
9
if(product.getStock()<quantity) {
10
return false;
11
}
12
long version = product.getVersion(); //获取旧数据的版本号
13
int result = productDb.descreaseStock(productId, quantity, version); //把版本号投入减库存方法
14
if(result==0) { // 查看按照该版本号能否修改库存,不能表示版本号已经变更,有其他并发请求修改了库存,放弃当前操作
15
return false;
16
}
17
PurchaseRecord record = initPurchaseRecord(userId, product, quantity);
18
recordDb.add(record);
19
return true;
20
}
21
}
乐观锁可以很好的提高执行效率,也可以确保不会出现超发的数据不一致问题,
但是,乐观锁也有自己的问题,请求失败率变得非常高,以致数据库还有剩余的商品!
实际中,我们需要在出现版本不一致的时候,终止当前事务同时再次引发一个新的购买事务,在一定次数(时间)范围反复尝试。以下演示的是限定次数的乐观锁:
@Service
2
public class PurchaseServiceImpl implements PurchaseService {
3
......
4
@Transactional
5
public boolean purchase(long userId, long productId, long quantity) {
6
for(int i=1; i<=3; i++){ //限定次数的乐观锁
7
Product product = productDb.findById(productId);
8
if(product.getStock()<quantity) {
9
return false;
10
}
11
long version = product.getVersion();
12
int result = productDb.descreaseStock(productId, quantity, version);
13
if(result==0) {
14
continue; //单次失败,再次执行
15
}
16
PurchaseRecord record = initPurchaseRecord(userId, product, quantity);
17
recordDb.add(record);
18
return true;
19
}
20
return false;
21
}
这样会增加成功的几率:
5 使用Redis解决高并发超发
Redis这类的NoSQL数据库以Hash的方式把数据存放在内存中,在理想环境中每秒读写次数可以高达10万次,数据吞吐效率远高于SQL数据库,因此用来解决大规模并发的读写操作。
Redis中有很多可以解决并发问题的技术:例如原子计数器、分布式锁、原子性的Lua脚本等等。这里介绍一个简单的方案“原子计数器”来减少。
Redis 的“INCR”命令可以将key中存储的数字值加1。如果key不存在,那么Key的值会先被初始化为0,然后再执行INCR操作。Redis 中的该操作时原子性的,不会被高并发打断,确保了数据的一致性。
5.1 使用Redis计数器的处理思路:
(1)抢购开始前,Redis缓存抢购商品的HashMap:从数据库中读取参加抢购的商品(ID)和对应的库存(stock)保存在Redis中;
(2)Redis中为每件抢购商品单独保存一个计数器:key中保存商品id信息,value中保存商品的销量(sales);
(3)处理每个购买请求时,先从Redis中读取商品库存(stock)和之前的销量(sales);若“库存<之前销量+本次购买量” 则 返回购买失败;否则 使用原子计数器增加销量,并继续执行后续的数据库操作;
5.2 具体实现:
(1)为Spring Boot 项目引入 Redis 依赖
<!-- redis -->
2
<dependency>
3
<groupId>org.springframework.boot</groupId>
4
<artifactId>spring-boot-starter-data-redis</artifactId>
5
</dependency>
(2)修改 application.yml 配置Redis
spring:
2
#redis配置连接
3
redis:
4
database: 0
5
host: localhost
6
port: 6379
7
password: 1234
8
timeout: 3600000 #缓存一个小时
(3)在开始抢购前缓存商品和库存集合
这里为了方便测试,直接用SpringBootTest来模拟:
@RunWith(SpringRunner.class)
2
@SpringBootTest
3
public class AddStocks2RedisTests {
4
@Autowired
5
private RedisTemplate<String, String> redisTemplate;
6
@Autowired
7
private ProductService productService;
8
9
@Test
10
public void testAddStocks2Redis() {
11
productService.findAll().forEach(x->{
12
redisTemplate.opsForHash().put("product-stocks", x.getId()+"", x.getStock()+"");
13
});
14
redisTemplate.expire("product-stocks", 3600, TimeUnit.SECONDS);
15
}
16
}
(4)重写PurchaseServiceImpl中的purchase方法,处理购买前先检查Redis中的库存和销量
// 4、Redis 原子计数器方案
2
@Autowired
3
private RedisTemplate<String, String> redisTemplate;
4
@Transactional
5
public boolean purchase(long userId, long productId, long quantity) {
6
//从redis获取某商品库存
7
long stock = Long.parseLong(redisTemplate.opsForHash().get("product-stocks", productId+"").toString());
8
//从redis查询该商品的销量 sales,如果还能购买,则在redis的原子计数器
9
synchronized (PurchaseService.class) {
10
//从redis中读取某商品的销量,比如key为“product-sales-123”
11
String value = redisTemplate.opsForValue().get("product-sales-"+productId);
12
long sales = 0;
13
if(value!=null) {
14
sales = Long.valueOf(value);
15
}else {
16
//如果redis中没有该商品的销量,则初始化为0,设定一定的过期时间
17
redisTemplate.opsForValue().set("product-sales-"+productId, "0");
18
redisTemplate.expire("product-sales-"+productId, 3600, TimeUnit.SECONDS);
19
}
20
//判断 如果 库存 < 销量+本次购买数量 则不能销售,返回 false
21
if( stock < (sales+quantity) ) {
22
return false;
23
}
24
//增加库存量,原子计数器
25
redisTemplate.opsForValue().increment("product-sales-"+productId, quantity);
26
}
27
//完成余下的数据库操作,保存数据,减少库存和增加销售记录
28
Product product = productDb.findById(productId); //查商品
29
productDb.descreaseStock(productId, quantity); //减库存
30
PurchaseRecord record = initPurchaseRecord(userId, product, quantity);
31
recordDb.add(record); //添加销售记录
32
return true;
33
}
这个方法利用了Redis的高速访问特性,有效的提高了并发超发的检查效率。
在实际应用中,我们还可以把购买的整个过程使用Redis操作记录下来,在空闲的时候再把结果同步回SQL数据库,这样就真的能解决并发的效率问题了。