多模态大型语言模型综述:在不同任务中的性能和挑战(二)

综述分享:A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks-多模态大型语言模型综述:在不同任务中的性能和挑战(二)


2024-8-2 西工大 多模态大模型最新综述

由于论文这部分主要是对多模态大模型的任务进行分类再加以实例进行分析,所以本文的主体就是对这篇文章这部分进行翻译总结。本文供作者自学所用。

目录

综述分享:A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks-多模态大型语言模型综述:在不同任务中的性能和挑战(二)

AI总结-太长不看版

一、图像任务分类

二、视频任务分类

三、音频任务分类

多模态大型语言模型的任务分类

图像任务分类

1)图像理解-具体来说

应用实例-总结

具体应用实例

MiniGPT - 4

2 )图像生成:

应用实例-总结

具体应用实例

MM-Interleaved

视频任务分类

1 )视频理解任务:

具体应用实例:

2 )视频生成任务:

具体应用实例:

音频任务分类

1 )音频理解:

2 )音频生成:


AI总结-太长不看版

本文围绕多模态大型语言模型(MLLMs)展开,详细阐述了其在视觉、音频任务中的贡献、应用以及相关模型的构建等内容,具体如下:

一、图像任务分类

  1. 图像理解: - MLLMs可从图像中提取有意义信息,经历了传统特征提取、深度学习、多模态学习、强化学习、图像生成与理解一体化等发展阶段。 - 应用实例中,MiniGPT-4、InstructBLIP等模型表现优异,介绍了它们的架构、数据集、训练与评估方法等。

  2. 图像生成: - MLLMs能依据文本描述生成图像,其应用包括条件图像生成和跨模态生成等,技术发展历经基于GAN的生成、模型改进优化、图文结合多模态生成、迁移与自监督学习应用等阶段。 - 介绍了Pro GAN、MM-Interleaved等应用实例模型的架构、数据集、训练与评估情况。

二、视频任务分类

  1. 视频理解任务:涵盖动作识别、视频问答等基础领域,介绍了应用于视频理解的两类模型(依赖LLM处理多模态特征交互、在LLM之前进行初步多模态特征交互)及相关代表模型(如Video-LLaMA、X-InstructBLIP)的架构、数据集、训练与评估。

  2. 视频生成任务:包括文本条件化、图像条件化视频生成和双向可视化合成等方式,技术演进经历基于深度学习的模型、自回归模型和扩散模型等阶段,以NeXT-GPT为例介绍了模型架构、数据集、训练与评估情况。

三、音频任务分类

  1. 音频理解:MLLMs在自动语音识别、语音到文本翻译等任务中表现出能力,通过构建数据集和指令微调取得进展,介绍了Qwen-Audio、SALMONN等模型的架构、数据集、训练与评估情况。

  1. 音频生成:涉及训练模型依据多种输入模态创建符合要求的音频输出,介绍了SpeechGPT、AudioGPT等模型在多模态数据集构建、对齐和桥接方面的贡献及各自模型架构、数据集、训练与评估情况。 综上,MLLMs在视觉和音频任务领域发展迅速,各相关模型在不同任务场景下各有优势,推动了相关领域的发展,且未来具有广阔的发展前景。


多模态大型语言模型的任务分类

详细介绍MLLMs在视觉和音频任务中的贡献,以及它在特定任务中的应用。同时,文章探索如何构建适用于这些任务类型的MLLMs。

图像任务分类

MLLMs的在图像方面的两个主要任务:图像理解和图像生成

  • 图像理解,多层线性模型擅长从图像中解释和提取有意义的信息。它们可以识别物体,理解场景,甚至推断图像中元素之间的关系。通过将视觉数据与文本描述相结合,这些模型可以提供超越传统图像处理方法的综合分析。例如,MLLM可以分析一张照片来识别当前的物体,描述它们之间的相互作用,并将其与相关的文本信息相关联,从而提供对视觉内容的细致入微的理解。

  • 图像生成:这些模型可以从文本描述中创建逼真的图像,生成现有图像的变化,甚至产生与给定文本输入一致的全新视觉内容。这种生成性能力对于创意产业等应用至关重要,其中产生新颖的视觉内容是必不可少的。通过在大量的图像和文本数据集上进行训练,MLLMs可以合成与指定描述一致的新图像,从而推开自动图像创建所能达到的边界。

1)图像理解-具体来说
  1. 基于传统特征提取方法的图像理解:早期的图像理解主要依赖于HOG、SIFT等传统特征提取方法。这些方法包括手动设计特征来描述图像内容,然后使用传统的机器学习算法进行分类和检测等任务。虽然这些方法在一些简单的图像任务中表现良好,但当面对复杂的图像数据时,它们在描述能力和泛化能力方面表现出局限性。

  2. 深度学习技术在图像理解中的应用:随着深度学习技术的快速发展,图像理解进入了一个新的阶段。通过深度卷积神经网络( CNN )等技术,直接从原始像素数据中学习高层特征表示成为可能,从而实现更精确的图像分类、目标检测、图像分割等任务。CNN网络在图像理解方面取得了突破性进展,如在ImageNet图像分类竞赛中获胜,标志着深度学习技术在图像理解领域的广泛应用。

  3. 多模态图像理解与跨模态学习:随着NLP与计算机视觉的交叉,多模态图像理解成为研究热点。通过整合图像、文本等多模态数据,可以实现图像描述、视觉问答等任务。此外,跨模态学习技术的应用为图像理解开辟了新的可能性,通过融合不同模态信息来增强图像内容的理解和表示。

  4. 强化学习在图像理解中的应用:近年来,强化学习在图像理解中的应用越来越多。强化学习可以帮助模型在复杂环境中进行决策,从而增强其图像理解能力。当与深度学习技术结合时,强化学习可以在图像分类和目标检测等任务中实现更加智能和自适应的图像理解过程。

  5. 图像生成与理解的整合:最近的研究表明,将图像生成与理解结合起来可以产生更全面、更深入的信息理解。通过生成式对抗网络( Generative Adversarial Networks,GAN )等生成式模型,可以生成具有语义灵活性的图像,以辅助模型更好地理解图像内容。这种融合为图像理解任务带来了更多的启发和创新,同时也为图像生成技术提供了额外的支持和应用场景。

图像理解技术经历了传统特征提取、深度学习、多模态学习、强化学习、图像生成与理解一体化等几个发展阶段。这些技术的不断创新和发展推动了图像理解的进步,为计算机视觉领域的研究和应用带来了更多的可能性和机遇。随着人工智能技术的不断发展,未来图像理解技术的发展将更加多样化和智能化,为实现更加智能的图像理解和应用提供更有力的支持。

应用实例-总结

多模态模型通过整合文本和图像信息,实现更智能、更全面的理解和推理,在图像理解任务中发挥着至关重要的作用。在这个领域中,MiniGPT-4 [ 41 ],[ 42 ],InstructBLIP [ 43 ]和Wiki - LLaVA [ 44 ]是三个备受关注的模型,以及其他相关的模型,如3DMIT [ 45 ],GroundingGPT [ 46 ],ModaVerse [ 47 ],Vary-toy [ 48 ],LLaVAMOLE [ 49 ]和CogCom [ 50 ]。MiniGPT - 4是在GPT - 4的基础上融合了文本和图像信息的多模态模型,表现出优异的图像理解能力。MiniGPT - 4采用模块化的架构设计,可以快速适应各种LLM,能够灵活地理解和推理。针对不同类型图像。该模型利用先进的图像编码器和文本生成器从图像中准确地描述和推断信息,为图像理解任务提供了有力的支持。

另一个突出的模型是InstructBLIP,它展示了出色的图像理解能力。凭借其模块化的架构设计,InstructBLIP可以快速适应不同的LLM,并通过冻结图像编码器和LLM进行指令调优。该方法能够实现对图像信息的高效理解和推理。InstructBLIP在视觉-语言指令调节方面表现优异,在有效考虑对话历史的同时生成丰富的回复,从而为图像理解任务提供了令人印象深刻的性能。

除了MiniGPT - 4和InstructBLIP之外,还有其他值得注意的多模态模型在图像理解任务中也发挥着重要作用。3DMIT采用先进的三维信息处理技术,能够实现对三维图像的深度理解和分析。扎根GPT注重将自然语言和视觉信息进行有效关联,实现跨模态的理解和推理。ModaVerse、Vary - toy、LLaVA - MOLE和CogCom等模型也在不同程度上表现出优异的图像理解能力,各具特色和优势,在图像理解任务中贡献显著。

综上所述,多模态模型在图像理解任务中起着至关重要的作用。MiniGPT - 4、InstructBLIP等相关模型都表现出了优异的性能和潜力,为图像理解任务的发展提供了有力的支持。随着技术的不断进步和模型性能的提升,多模态模型有望在图像理解任务中发挥越来越重要的作用,为人工智能领域带来更多的创新和突破。

具体应用实例
MiniGPT - 4

架构:MiniGPT - 4旨在通过先进的LLM从预训练的视觉编码器对齐视觉信息。具体来说,它使用Vicuna作为语言解码器,它是基于LLaMA构建的,可以执行广泛的复杂语言任务。对于视觉感知,该模型使用了BLIP - 2中使用的相同的视觉编码器,由一个ViT骨干和一个预训练的Q - Former组成。语言模型和视觉模型都是开源的。一个线性投影层桥接视觉编码器和LLM之间的间隙。该架构允许MiniGPT - 4在不依赖外部视觉模型的情况下处理不同的视觉语言任务。

数据集:在第一个预训练阶段,MiniGPT4使用大量对齐的图像-文本对集合进行训练。这包括概念描述、SBU、LAION等数据集,约500万个图文对。在第二个微调阶段,生成一个较小但高质量的数据集,其中包括为视觉语言对齐量身定制的详细图像描述。该阶段仅涉及在对话模板中设计的3500个高质量的图像-文本对,以增强模型的生成可靠性和可用性。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值