目 录
1设计目的、内容及要求
1.1 设计目的
(1)全面复习数字信号处理课程所学理论知识,巩固所学知识重点和难点,将理论与实践很好地结合起来;
(2)提高综合运用所学知识独立分析和解决问题的能力;
(3)熟练使用一种高级语言进行编程实现,比如MATLAB。
1.2 设计内容
(1)编写程序演示采样定理(时域采样、频谱周期延拓),同时展示采样频率小于2fc时,产生的混叠效应:
①对下面连续信号采样:
,A=50,a=0.2,,A为幅度因子,a为衰减因子,为模拟角频率。选取不同的观察时间,对信号进行观察分析。
②要求用不同输入采样频率fs对进行采样,在时域展示采样后信号波形;在频域展示对应的信号频谱。并对照采样定理分析设计结果。
(2)滤波器设计及应用
①自行录取一段语音信号(*.wav---给出录制时的采样频率);(注意预先清除信号前的过多零值信号)
②语音信号的频谱分析,画出采样后语音信号的时域波形和采样信号频谱图;
③产生噪声信号并加到语音信号中,得到被污染的语音信号,并回放语音信号;
④受噪音影响信号的频谱分析,画出被污染的语音信号时域波形和频谱;
⑤根据上面(2)-(4)步中的对录制信号的分析,进行信号频率预处理,使其符合测试设计滤波器的信号要求;自定滤波器频率技术指标(低通);设计IIR数字滤波器,并画出相应滤波器的幅频特性图;
a.滤波器类型:切比雪夫滤波器(低通)
b.总体要求:技术指标+Matlab原程序+幅频特性图+结果分析
c.用自己设计的滤波器分别对被不同噪声污染的信号进行滤波测试;
d.分析得到信号的频谱,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;
e.回放语音信号。
⑥根据上面(2)-(4)步中对录制信号的分析,进行信号频率预处理,使其符合设计滤波器的测试要求;自定滤波器频率技术指标。设计FIR数字滤波器,并画出相应滤波器的幅频特性图;(设计FIR滤波器)(低通);
a.滤波器类型:汉明窗(低通)
b.总体要求:技术指标+窗函数+Matlab原程序+幅频特性图+结果分析
c.用自己设计的滤波器分别对被不同噪声污染的信号进行滤波;
d.分析得到信号的频谱,画出滤波前后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;
e.回放语音信号。
1.3 设计思考
(1)双线性变换法中Ω和ω之间的关系是非线性的,在设计中你注意到这种非线性关系了吗?从哪几种数字滤波器的幅频特性曲线中可以观察到这种非线性关系?
(2)能否利用公式完成脉冲响应不变法的数字滤波器设计?为什么?
1.4设计要求
- 掌握数字信号处理的基本概念,基本理论和基本方法。
(2)熟悉离散信号和系统的时域特性。
(3)掌握序列快速傅里叶变换方法。
(4)学会MATLAB的使用,掌握MATLAB的程序设计方法。
(5)掌握利用MATLAB对语音信号进行频谱分析。
(6)掌握滤波器的网络结构。
(7)掌握MATLAB设计IIR数字滤波器的方法和对信号进行滤波的方法。
2设计方案与设计原理
2.1 设计思路
⑴选择已录音频“C:\安装包\MATLAB 2018a_win64\MATLAB 2018a_win64\雷声.wav”声音作为语音信号。
⑵根据不同的滤波器选择不同的噪声信号加到语音信号中,得到被污染的语音信号。
⑶设计切比雪夫滤波器(低通)以及Hamming窗滤波器(低通)对被污染的语音信号滤波,滤掉相应的噪音信号,得到符合要求的语音信号。
2.2 采样定理
对模拟信号进行采样可以看做一个模拟信号通过一个电子开关S。设电子开关每隔周期T合上一次,每次合上的时间为τ<<T,在电子开关输出端得到其采样信号。该电子开关的作用等效成一宽度为τ,周期为T的矩形脉冲þT(t),采样信号就是与þT(t)想乘的结果。
(2-1)
(2-2)
2.3 卷积定理
1.离散时间序列f1(k)和f2(k)的卷积和定义:
(2-3)
2.在离散信号与系统分析中有两个与卷积和相关的重要结论:
a、 (2-4)
即离散序列可分解为一系 列幅度由f(k)决定的单位序列δ(k)及其平移序列之积。
b、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状态响应为y(k),则有:
(2-5)
2.4 IIR滤波器原理
⑴切比雪夫滤波器的设计原理
巴特沃斯滤波器的频率特性曲线,无论在通带还是阻带都是频率的单调减函数。当通带边界满足指标要求时,通带内肯定会有较大富余量。因此更有效的设计方法应是将逼近精度均匀地分布在整个通带内。这可通过选择具有等波纹特性的逼近函数来达到。
切比雪夫滤波器的幅频特性具有等波纹特性。它有两种形式:幅频特性在通带内是等波纹的,在阻带内是单调下降的切比雪夫I型滤波器;幅频特性在通带内是单调下降、在阻带内是等波纹的切尔雪夫等波纹的II型滤波器。
⑵双线性变换法工作原理
双线性变换中数字域频率和模拟频率之间的非线性关系限制了它的应用范围,只有当非线性失真是允许的或能被忽略时,才能采用双线性变换法,通常低通、高通、带通和带阻等滤波器等具有分段恒定的频率特性,可以采用预畸变的方法来补偿频率畸变,因此可以采用双线性变换设计方法。
⑶脉冲响应不变法工作原理
冲激响应不变法遵循的准则是使数字滤波器的单位取样响应与参照的模拟滤波器的脉冲响应的取样值完全一样,即h(n)=ha(nT),其中T为取样周期。实际是由模拟滤波器转换成为数字滤波器,就是要建立模拟系统函数Ha(S)与数字系统函数H(z)之间的关系。脉冲响应不变法是从S平面映射到z平面,这种映射不是简单的代数映射,而是S平面的每一条宽为2π/T的横带重复地映射到整个z平面。
2.5 FIR滤波器的原理
由于IIR数字滤波器能够保留一些模拟滤波器的优良特性,因此应用很广。但是这些特性是以牺牲线性相位频率特性为代价的,即用Butterworth、切比雪夫和椭圆法设计的数字滤波器逼近理想的滤波器的幅度频率特性,得到的滤波器往往是非线性的。在许多电子系统中,对幅度频率特性和线性相位特性都有较高的要求,所以IIR滤波器在这些系统中往往难以胜任。有限长单位冲激响应(FIR)数字滤波器具有以下优良的特点:
(1)可在设计任意幅度频率特性滤波器的同时,保证精确、严格的线性相位特性。
(2) FIR数字滤波器的单位冲激响应h(n)是有限长的,可以用一个固定的系统来实现,因而FIR数字滤波器可以做成因果稳定系统。
(3)允许设计多通带(多阻带)系统。
窗函数法就是设计FIR数字滤波器的最简单的方法。它在设计FIR数字滤波器中有很重要的作用,正确地选择窗函数可以提高设计数字滤波器的性能,或者在满足设计要求的情况下,减小FIR数字滤波器的阶次。下面着重介绍哈明(hamming)窗,其在MATLAB中,调用格式分别如下:
w=hamming (N)
w=hamming (N,'sflag')
hamming函数中的参数sflag为采样方式,其值可取symmetric(默认值)或periodic。当sflag=symmetric时,为对称采样;当sflag=periodic时,为周期采样,此时hamming函数计算N+1个点的窗,但是仅返回前N个点。
2.6 窗函数原理
在实际进行数字信号处理时,往往需要把信号的观察时间限制在一定的时间间隔内,取用有限个数据,即将信号数据截断的过程,就等于将信号进行加窗函数操作。而这样操作以后,常常会出现“频谱泄漏”。而要对频谱泄漏进行抑制,可以通过窗函数加权抑制 DFT 的等效滤波器的振幅特性的副瓣,或用窗函数加权使有限长度的输入信号周期延拓后在边界上尽量减少不连续程度的方法实现。而在后面的FIR 滤波器的设计中,为获得有限长单位取样响应,需要用窗函数截断无限长单位取样响应序列。
由此可见,窗函数加权技术在数字信号处理中的重要地位。下面介绍窗函数的基本概念。设x(n)是一个长序列,w(n)是长度为N的窗函数,用w(n)截断x(n),得到N点序列xn(n),即
(2-6)
在频域上则有
(2-7)
由此可见,窗函数 w(n)不仅仅会影响原信号 x(n)在时域上的波形,而且也会影响到频域内的形状。
数字信号处理领域中所用到的基本窗函数主要有:
表1-1基本窗函数参数
窗函数 | 旁瓣峰值幅度/db | 过渡带宽 | 阻带最小衰减/db |
矩形窗 | -13 | 4π/N | 12 |
三角形窗 | -25 | 8π/N | -25 |
汉宁窗 | -31 | 8π/N | -44 |
哈明窗 | -41 | 8π/N | -53 |
不萊克曼窗 | -57 | 12π/N | -74 |
凯塞窗 | -57 | 10π/N | -80 |
3设计的步骤及过程
3.1 IIR设计步骤及过程
如图1所示为完整滤波功能设计过程流程图:
图1 完整滤波功能设计流程图
如图2所示为切比雪夫滤波器设计流程图:
图2切比雪夫滤波器设计流程图
设计步骤如下:
⑴按一定的规则将给出的数字滤波器的技术指标转换为模拟低通滤波器的技术指标。
(2)根据转换后的技术指标设计模拟低通滤波器G(s)。
(3)再按一定的规则将G(s)转换成H(s)。若所设计的数字滤波器是低通的,那么上述设计工作可以结束,若所设计是高通、带通或带阻滤波器,那么还需进行以下步骤。
(4)将高通、带通或带阻数字滤波器的技术指标先转换为低通模拟滤波器的技术指标,然后按照上述步骤(2)设计出低通G(s),再将G(s)转换为所需的H(z)。
由于的频率映射关系是根据推导的,所以使jΩ轴每隔2π/Ts便映射到单位圆上一周,利用冲激响应不变法设计数字滤波器时可能会导致上述的频域混叠现象。为了克服这一问题,需要找到由s平面到z平面的另外的映射关系,这种关系应保证:
(1)s平面的整个jΩ轴仅映射为z平面单位圆上的一周;
(2)若G(s)是稳定的,由G(s)映射得到的H(z)也应该是稳定的;
(3)这种映射是可逆的,既能由G(s)得到H(z),也能由H(z)得到G(s);
(4)如果,那么。
双线性Z变换满足以上4个条件的映射关系,其变换公式为
(3-1)
双线性Z变换的基本思路是:首先将整个s平面压缩到一条从–π/Ts到π/Ts的带宽为2π/Ts的横带里,然后通过标准的变换关系将横带变换成整个z平面上去,这样就得到s平面与z平面间的一一对应的单值关系。
3.2 FIR设计过程及步骤
(1)根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口长度N;
(2)构造希望逼近的频率响应函数,即;
(3)计算;
(4)加窗得到设计结果:。
4设计程序的调试及运行结果
4.1 采样定理的验证
连续信号采样:
,A=50,a=0.2 A 为幅度因子,a为衰减因子,为模拟角频率。用不同输入采样频率fs对进行采样,在时域展示采样后信号波形;在频域展示对应的信号频谱,如图3所示。
原信号时域图如图3所示:
图3 原信号时域图
原信号频谱图如图4所示:
图4 原信号频谱图
频率为200Hz时时域图如图5所示:
图5 200Hz时域图
频率为200Hz时频域图如图6所示:
图6 200Hz频域图
频率为100Hz时时域图如图7所示:
图7 100Hz时域图
频率为100Hz时频域图如图8所示:
图8 100Hz频域图
分析:采样序列的频谱是以采样频率为周期对模拟信号频谱的周期延拓。当采样频率为100Hz时,在折叠频率50Hz附近频谱混叠现象很严重;当采样频率为200Hz时,没有出现频谱混叠现象。由此可知,时域采样时,频域采样频率必须大于等于模拟信号最高频率的两倍以上才能使采样信号频谱不产生混叠现象。
4.2切比雪夫低通滤波器程序的调试和运行结果
录一段语音,画出原信号时域图频域图,时域图x轴为时间,y轴为振幅,频域图x轴为频率,y轴为振幅,如图9所示为原语音信号的时域图和频谱图。
图9 原语音信号时域图和频谱图
如图10所示为加噪后的语音信号的时域图和频谱图。
图10 加噪音语音信号的时域图和频谱图
如图11所示为切尔雪夫低通滤波器的幅频图
图11 低通滤波器的幅频图
如图12所示为滤波后语音信号的时域图和频谱图:
图12 滤波后语音信号的时域图和频谱图
分析:选择切比雪夫低通滤波器是因为加入的噪声是高频信号,现要将语音进行去噪处理,因此要过滤掉高频信号,让低频信号正常通过,所以选择的是低通滤波器。
4.3 hamming低通滤波器程序的调试和运行结果
如图13所示为原语音信号的时域图和频谱图。在MATLAB中通过wavplay(‘filename’)读取语音信号数据。
图13 原信号时域图和频域图
如图14所示为被污染语音信号的时域图和频谱图。
图14被污染语音信号的时域图和频谱图
如图15所示为低通滤波器的幅频图和相频图。
图15低通滤波器的幅频图和相频图
如图16所示为滤波后语音信号的时域图和频谱图。
图16滤波后语音信号的时域图和频谱图
分析:加入的噪音信号是高频信号,现要对噪声进行处理,要让低频信号正常通过,过滤掉高频信号,再根据原始音频信号和噪音信号的频率特性选择了hamming窗低通滤波器。hamming窗的加权系数能使旁瓣相对幅度达到更小,其加权系数的设置使得能量更加集中在主瓣。
5 课程设计结果分析与设计思考
5.1 结果分析
现将切尔雪夫低通滤波器滤波后语音信号频谱图(图12)跟Hamming低通滤波器滤波后语音信号频谱图(图16)与原信号频谱图(图9)做对比,易发现Hamming低通滤波器滤波效果更好,基本上保留了原信号以及过滤了噪音信号,因此选择Hamming低通滤波器更合适。
由设计结果补充,FIR滤波器具有严格的线性相位,幅度特性随意设置的同时,保证精度的线性相位。IIR滤波器的相位非线性,相位特性不好控制,随截止频率变化而变化,对相位要求较高时,需加相位校准网络。因此可知FIR设计方法在硬件上更容易实现。而IIR滤波器由于具有历史的输出参与反馈,同FIR相比在相同阶数时,取得更好的滤波效果。IIR和FIR滤波器各有所长,所以在实际应用时应该从多方面来加以考虑,从使用要求上来看,在对相对要求不敏感的的场合,如语言通信等,选用IIR较为合适,这样可以充分发挥其经济高效的特点;对于图像信号处理,数据传输等以波形携带信息的系统,则对线性相位要求较高,采用FIR滤波器较好。
5.2设计思考
1.双线性变换法中Ω和ω之间的关系是非线性的,在实验中你注意到这种非线性关系了吗?从哪几种数字滤波器的幅频特性曲线中可以观察到这种非线性关系?
答:在双线性变换法中,模拟频率与数字频率不再是线性关系,所以一个线性相位模拟器经过双线性变换后得到的数字滤波器不再保持原有的线性相位了。如以上实验过程中,采用双线性变化法设计的butter和cheby1数字滤波器,从图中可以看到这种非线性关系。
2. 能否利用公式完成脉冲响应不变法的数字滤波器设计?为什么?
答:IIR数字滤波器的设计实际上是求解滤波器的系数和,它是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。如果在S平面上去逼近,就得到模拟滤波器;如果在z平面上去逼近,就得到数字滤波器。但是它的缺点是,存在频率混迭效应,故只适用于阻带的模拟滤波器。