- 博客(8)
- 收藏
- 关注
原创 【论文阅读分享】SCKD: Semi-Supervised Cross-Modality Knowledge Distillation for 4D Radar Object Detection
《SCKD:半监督跨模态知识蒸馏在4D雷达目标检测中的应用》提出了一种解决4D毫米波雷达点云稀疏、噪声大且标签数据匮乏的方法。该方法通过教师-学生网络架构,利用激光雷达(LiDAR)引导雷达特征学习:1)采用稀疏卷积提取双模态特征,并通过自适应权重融合;2)引入模态丢弃机制增强鲁棒性;3)设计了特征级(LiDAR到雷达、融合到雷达)和输出级(基于置信度筛选伪标签)的蒸馏策略。实验表明,该方法有效提升了雷达目标检测性能,代码已开源。
2025-06-22 17:19:45
291
1
原创 【论文阅读分享】L4DR: LiDAR-4DRadar Fusion for Weather-Robust 3D Object Detection
首先对于Radar的数据会进行前景点预测,即FAD,以去除噪声点的影响。随后通过MME模块对Radar和LiDAR的特征进行交互补充。最后在BEV特征图上进行多层次的门控特征融合,最后送到检测头中输出检测结果。
2025-06-22 10:57:32
1275
1
原创 【论文阅读分享】3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View ..........
低级 LiDAR 特征和摄像头特征使用基于感兴趣区域 (RoI) 的特征池分别池化,并与联合摄像头 LiDAR 特征融合,以增强提案优化。其中集合 {fm,n} 对应于最接近(ˆ x+ ∆x, ˆ y + ∆y)的四个相邻特征像素,wm,n 是通过插值方法获得的权重。体素中心投影到相机视图平面中的(ˆ x, ˆ y),并且 (ˆ x, ˆ y) 由校准偏移量 (∆x, ∆y) 进行调整。,将 2D 相机特征转换为平滑的空间特征图,与鸟瞰图 (BEV) 域中的 LiDAR 特征具有最高的对应关系。
2024-08-30 14:33:55
650
1
原创 【论文阅读分享】Point Density-Aware Voxels for LiDAR 3D Object Detection
点密度感知体素网络 (PDV),是一种端到端的两阶段LiDAR 3D 对象检测架构,旨在考虑这些点密度变化。通过体素点质心有效地定位3D 稀疏卷积主干中的体素特征。通过使用核密度估计(KDE)和带有点密度位置编码的自我注意的密度感知 RoI 网格池模块聚合空间定位的体素特征。利用LiDAR 的点密度与距离关系来优化最终的边界框置信度。
2024-08-30 13:37:35
852
1
原创 【论文阅读分享】LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion
对投影网格点周围的图像特征进行采样,以便与位置修饰的点云特征融合,从而最大限度地利用围绕提案的丰富上下文信息。FDA 实现了全局和局部融合特征之间的信息交互,从而产生了信息量更大的多模态特征。Fs虽然包含了不同来源的特征信息,但交互不充分,因此引入了自注意力机制,自适应的构建不同网格点特征之间的关系,增强信息交互。特征动态聚合(FDA): 实现这些局部和全局融合特征之间的信息交互,从而产生信息量更大的多模态特征。自注意力机制选择图像中与点云的高相关性特征,随后与点云特征进行融合。最后进行包围框预测等。
2024-08-29 14:06:29
1120
1
原创 【论文阅读分享】Focal Sparse Convolutional Networks for 3D Object Detection
主要介绍了一下三种卷积的一个理解,理解不全请见谅,互相讨论学习
2024-08-19 14:53:12
707
1
空空如也
K-Radar数据集怎么下载和使用
2025-04-15
TA创建的收藏夹 TA关注的收藏夹
TA关注的人