MySQL数据库

目录

一. MySQL概述

1.数据库相关概念

2. MySQL数据库的安装

3. MySQL的启动与停止

4. MySQL客户端连接

5. 配置MySQL环境变量

6. 数据模型

二. SQL

1. SQL通用语法

2. SQL分类

3. DDL

4. DDL-表操作-创建&查询 

5. DDL-表操作-修改&删除

6. 数据类型

(1)数值类型

(2)字符串类型

(3)日期时间类型

7. 图形化界面工具DataGrip

8. DML-添加,修改,删除

9. DQL

(1)基本语法

(2)基本查询

(3)条件查询

(4)聚合函数

(5)分组查询

(6)排序查询

(7)分页查询

(8)执行顺序

10. DCL 

(1)用户管理

(2)权限控制

三. 函数   

1. 字符串函数

2. 数值函数

3. 日期函数

4. 流程函数

四. 约束

五. 多表查询

1. 多表关系介绍:

2. 多表查询

(1)多表查询概括

(2)多表查询-内连接

(3)多表查询-外连接 

(4)多表查询-自连接

(5)多表查询-联合查询union

(6)多表查询-子查询

  ①概述

  ②标量子查询

  ③列子查询

  ④行子查询

  ⑤表子查询

六.  事务

1. 事务简介

2. 操作演示

3. 四大特性ACID

4. 并发事务问题

5. 并发事务隔离级别 

七. 存储引擎

1. MySQL体系结构

2. 存储引擎简介

3. 存储引擎特点

(1)InnoDB

(2)MyISAM

(3)Memory

(4)区别及特点

4. 存储引擎选择 

八. 索引

1. 索引概况

2. 索引结构 

(1)概述

(2)B-tree

①二叉树和红黑树:

②B-Tree: 

③B+Tree:

(3)hash

3. 分类 

4. 语法

5. 性能分析 

(1)SQL执行频率

(2)慢查询日志

(3)profile详情

(4)explain

 6. 使用规则

(1)验证索引效率

(2)最左前缀法则

(3)范围查询

(4)索引失效情况

①索引列运算

②字符串不加引号

③模糊查询

④or连接条件

⑤数据分布影响

(5)SQL提示

(6)覆盖索引,回表查询 

(7)前缀索引

(8)单列索引与联合索引

(9)设计原则 

九. SQL优化

1. 插入数据

(1)insert:

(2)大批量插入数据

2. 主键优化

(1)数据组织方式

(2)页分裂

(3)页合并

(4)主键优化

3. order by优化

4. group by优化 

5. limit优化 

6. count优化

7. update优化

十. 视图/存储过程/存储函数/触发器

 1. 视图

(1)介绍

(2)语法

(3)检查选项

(4)视图的更新及作用

(5)案例

2. 存储过程 

(1)介绍

(2)基本语法

(3)变量

①系统变量 

②用户定义变量

③局部变量

(4)if判断 

(5)参数

(6)case

(7)while循环

(8)repeat循环

(9)loop循环

(10)条件处理程序handler

(11)游标cursor 

3. 存储函数 

4. 触发器

十一. 锁 

1. 介绍

2. 全局锁 

3. 表锁

(1)介绍

(2)表锁:

(3)元数据锁

(4)意向锁

4. 行级锁 

十二.  InnoDB引擎

1. 逻辑存储结构

2. 架构

(1)内存结构

(2)磁盘结构

(3)后台线程

3. 事务原理 

(1)事务基础

(2)redo log

(3)undo log

(4)MVCC

 十三. MySql管理

十四. 日志

1. 错误日志

2. 二进制日志 

3. 查询日志

4. 慢查询日志

十五. 主从复制  

十六. 分库分表

 1. 介绍

(1)问题分析

(2)拆分策略

(3)实现技术

十七. 读写分离 

1. 介绍


一. MySQL概述

1.数据库相关概念

而目前主流的关系型数据库管理系统的市场占有率排名如下:

Oracle:大型的收费数据库,Oracle公司产品,价格昂贵。

MySQL:开源免费的中小型数据库,后来Sun公司收购了MySQL,而Oracle又收购了Sun公司。 目前Oracle推出了收费版本的MySQL,也提供了免费的社区版本。

SQL Server:Microsoft 公司推出的收费的中型数据库,C#、.net等语言常用。  PostgreSQL:开源免费的中小型数据库。 DB2:IBM公司的大型收费数据库产品。 SQLLite:嵌入式的微型数据库。Android内置的数据库采用的就是该数据库。

MariaDB:开源免费的中小型数据库。是MySQL数据库的另外一个分支、另外一个衍生产品,与 MySQL数据库有很好的兼容性。

而不论我们使用的是上面的哪一个关系型数据库,最终在操作时,都是使用SQL语言来进行统一操作, 因为我们前面讲到SQL语言,是操作关系型数据库的 统一标准 。所以即使我们现在学习的是MySQL, 假如我们以后到了公司,使用的是别的关系型数据库,如:Oracle、DB2、SQLServer,也完全不用 担心,因为操作的方式都是一致的。

 2. MySQL数据库的安装

官方:https://www.mysql.com/

MySQL官方提供了两种不同的版本:

       社区版本(MySQL Community Server) 免费, MySQL不提供任何技术支持

       商业版本(MySQL Enterprise Edition) 收费, 可以使用30天,官方提供技术支持

1. 进入官网点击DOWNLOADS

2. 点击MySQL Community(GPL) Downloads

3.点击MySQL Installer for Windows

4. 下载程序包

5. 这样可以跳过注册,直接下载。

6. 双击安装包开始安装,选择Full,点击Next

7. 这里有我们需要安装的所有组件,然后点击Back

8. 选择自定义Custom,点击Next

9.可以看到这里加载出来了我们所需要安装的组件。因为直接选择Full的话不能选择安装路径,而通过选择Full后回退选择Custom可以自动加载Full里面的组件,还可以自定义安装路径。

10. 选择组件后点击Advanced Options分别自定义安装路径,把\MySQl前面的路径换成自己想设置成的路径,然后点击Next进行组件的检查,检查是否缺漏某个组件。一直点击Next

11.设置root密码,我设置的123456,然后点击next

12.点击Execute检查配置信息

13.点击Finish,点击Cancel,点击yes

 3. MySQL的启动与停止

MySQL安装完成之后,在系统启动时,会自动启动MySQL服务,我们无需手动启动了。

当然,也可以手动的通过指令启动停止,

方式1:在命令行中输入services.msc进入windows系统服务,找到MySQl80,鼠标右击选择启动停止

方式2:以管理员身份运行cmd,net start mysql80表示启动,net stop mysql80表示停止

4. MySQL客户端连接

方式1:MySQL提供的客户端命令行工具

方式2:系统自带的命令行工具执行指令(需要先配置mysql环境变量)

             执行指令:mysql  [-h 127.0.0.1] [-P 3306] -u root -p

             参数: -h : MySQL服务所在的主机IP

                         -P : MySQL服务端口号, 默认3306

                         -u : MySQL数据库用户名

                         -p : MySQL数据库用户名对应的密码

                        []内为可选参数,如果需要连接远程的MySQL,需要加上这两个参数来指定远

                        程主机IP、端口,如果连接本地的MySQL,则无需指定这两个参数。

              查看版本号:select version();

              退出连接:exit

             

5. 配置MySQL环境变量

1. 点击此电脑的属性

2. 点击高级系统设置—>打开环境变量—>找到Path并点击编辑

3.点击新建—>找到安装mysql的路径,找到里面的MySQL Server 8.0里面的bin文件,

复制此路径放在新建里,然后确定

6. 数据模型

关系型数据库(RDBMS):

概念:建立在关系模型基础上,由多张相互连接的二维表组成的数据库。

而所谓二维表,指的是由行和列组成的表,如下图(就类似于Excel表格数据,有表头、有列、有行, 还可以通过一列关联另外一个表格中的某一列数据)。MySQL、Oracle、DB2、 SQLServer这些都是属于关系型数据库,里面都是基于二维表存储数据的。简单说,基于二维表存储数据的数据库就成为关系型数据库,不是基于二维表存储数据的数据库,就是非关系型数据库。

特点: 使用表存储数据,格式统一,便于维护。

            使用SQL语言操作,标准统一,使用方便。

数据模型:

MySQL是关系型数据库,是基于二维表进行数据存储的,具体的结构图下:

我们可以通过MySQL客户端连接数据库管理系统DBMS,然后通过DBMS操作数据库。

可以使用SQL语句,通过数据库管理系统操作数据库,以及操作数据库中的表结构及数据。 一个数据库服务器中可以创建多个数据库,一个数据库中也可以包含多张表,而一张表中又可以包含多行记录    。

二. SQL

1. SQL通用语法

SQL全称 Structured Query Language,结构化查询语言。操作关系型数据库的编程语言,定义了一套操作关系型数据库统一标准 。 

SQL语言的通用语法:

1️⃣ SQL语句可以单行或多行书写,以分号结尾。

2️⃣ SQL语句可以使用空格/缩进来增强语句的可读性。

3️⃣ MySQL数据库的SQL语句不区分大小写,关键字建议使用大写。

4️⃣ 注释: 单行注释:-- 注释内容 或 # 注释内容

                  多行注释:/* 注释内容 */

标识符命名规定:
1️⃣数据库名、表名不得超过30个字符,变量名限制为29个
2️⃣必须只能包含A-Z,a-z,0-9,_ 共63个字符,而且不能数字开头

3️⃣数据库名、表名、字段名等对象名中间不能包含空格
4️⃣同一个MySQL软件中,数据库不能同名;同一个库中,表不能重名;同一个表中,字段

     不能重名
5️⃣必须保证字段没有和保留字、数据库系统或常用方法冲突。如果坚持使用,请在SQL语句

     中使用`(着重号)引起来

标识符命名规范(基于阿里巴巴规范手册):
阿里巴巴的SQL规范建议通常是为了确保数据库操作的效率、安全性和可维护性。
1️⃣注释应该清晰、简洁地解释SQL语句的意图、功能和影响。
2️⃣库、表、列名应该使用小写字母,并使用下划线(_)或驼峰命名法。
3️⃣库、表、字段名应该简洁明了,具有描述性,反映其所存储数据的含义

4️⃣库名应于对应的程序名一致例如:程序名为EcommercePlatform 数据库名命名为

     ecommerce_platform"
5️⃣表命名最好是遵循“业务名称_表”的作用例如:alipay_task、force_project、trade_config
6️⃣列名应遵循“表实体_属性"”的作用例如:product_name或productName

2. SQL分类

SQL语句,根据其功能,主要分为四类:DDL、DML、DQL、DCL。

3. DDL

Data Definition Language,数据定义语言,用来定义数据库对象(数据库,表,字段) 。

查询:
  查询所有数据库: show databases;
  查询当前数据库: select database();
创建数据库:
  create database [if not exists] 数据库名 [default charset 字符集] [collate 排序规则];
删除数据库:
  drop database [ if exists ] 数据库名;
切换使用数据库:
  use 数据库名;
查看指定数据库下所有表:show tables from 数据库名;
查看创建库的信息和语句:show create database 数据库名;

修改库编码字符集:
修改字符集gbk utf8
  ALTER DATABASE 数据库名 CHARACTER SET 字符集; 
修改排序方式
  ALTER DATABASE 数据库名 COLLATE 排序方式; 
修改字符集和排序方式
  ALTER DATABASE 数据库名 CHARACTER SET 字符集 COLLATE 排序方式; 
注意:
  DATABASE不能改名,一些可视化工具可以改名,它是建新库,把所有表复制到新库,再删旧库完成的。

字符集和排序规则:
 字符集就是我们常说的编码格式,决定了数据如何编码存储!
 排序规则决定了如何比较和排序存储在数据库中的文本数据。

常见字符集(Character Set):
  utf8:早期版本的字符集,最多3字节存储一个字符,3字节无法覆盖全部unicode编码,有显示乱
        码可能。
  utfmb4(8+默认):解决utf8的存储限制,使用4字节进行字符存储,可以覆盖更广Unicode编
                   码,包括表情符号等等。
常见排序规则(Collate):
  utf8mb4_0900_ai_ci:UTF-8 的不区分大小写的排序规则((mysql8+的默认排序规则)。
  utf8mb4_0900_as_cs:UTF-8 的 Unicode 排序规则,区分大小写!。
  注意:如果选择utf8的字符集则不能使用这两个排序规则

MySQL8默认值(不同版本可能会有不同):
  字符集:utf8mb4  是一种广泛支持各种语言字符的字符集。
  排序规则:utf8mb4_0900_ai_ci 是一种不区分大小写的排序规则
查看默认字符集和排序方式命令:
  SHOW VARIABLES LIKE 'character_set_database';
  SHOW VARIABLES LIKE 'collation_database';

查询所有数据库:

创建数据库:

创建后查询:

在同一个数据库服务器中,不能创建两个名称相同的数据库,否则将会报错。

可以通过if not exists 参数来解决这个问题,数据库不存在, 则创建该数据 库,如果存在,则不创建。

创建一个itheima数据库,并且指定字符集

删除数据库

如果删除一个不存在的数据库,将会报错。此时,可以加上参数 if exists ,如果数据库存在,再 执行删除,否则不执行删除。

使用数据库

查询当前数据库:

4. DDL-表操作-创建&查询 

查询当前数据库所有表: show tables;
查看指定表结构:desc 表名;
查询指定表的建表语句: show create table 表名 ;
创建表结构:CREATE TABLE [IF NOT EXIST] 表名(
             字段1 字段1类型 [约束] [ COMMENT '字段1注释' ],
             字段2 字段2类型 [约束] [COMMENT '字段2注释' ],
             字段3 字段3类型 [约束] [COMMENT '字段3注释' ],
             ......
             字段n 字段n类型 [约束] [COMMENT '字段n注释' ]
          ) [ COMMENT '表注释' ] ;
          注意: [...] 内为可选参数,最后一个字段后面没有逗号

查询当前数据库所有表,我们可以切换到sys这个系统数据库,并查看系统数据库中的所有表结构。

创建一张表 tb_user ,对应的结构如下

查看当前数据库所有表

查询表结构

查询指定表的建表语句

5. DDL-表操作-修改&删除

添加字段:
  ALTER TABLE 表名 ADD 字段名 类型(长度) [COMMENT 注释] [约束];
  例如:为emp表增加一个新的字段”昵称”为nickname,类型为varchar(20)
       alter table emp add nickname varchar(20) comment '昵称';
修改数据类型:
  ALTER TABLE 表名 MODIFY 字段名 新数据类型(长度);
修改字段名和字段类型:
  ALTER TABLE 表名 CHANGE 旧字段名 新字段名 类型(长度) [COMMENT 注释] [约束];
  例如:将emp表的nickname字段修改为username,类型为varchar(30)
       alter table emp change nickname username varchar (30) comment '用户名';
删除字段:
  ALTER TABLE 表名 DROP 字段名;
  例如:将emp表的字段username删除
       alter table emp drop username;
修改表名:
  ALTER TABLE 表名 RENAME TO 新表名;
  例如:将emp表的表名修改为 employee
       alter table emp rename to employee;
删除表:
  DROP TABLE [IF EXISTS] 表名;
  可选项 IF EXISTS 代表,只有表名存在时才会删除该表,表名不存在,则不执行删除操作
  (如果不加该参数项,删除一张不存在的表,执行将会报错)。
  例如:如果tb_user表存在,则删除tb_user表
       drop table if ecists tb_user;
删除指定表, 并重新创建表:
  TRUNCATE TABLE 表名;
注意: 在删除表的时候,表中的全部数据也都会被删除。 

6. 数据类型

MySQL中的数据类型有很多,主要分为三类:数值类型、字符串类型、日期时间类型。

(1)数值类型

如:

1.年龄字段 -- 不会出现负数, 而且人的年龄不会太大
  age tinyint unsigned
2.分数 -- 总分100分, 最多出现一位小数
  score double(4,1)

注意:无符号==无负号,整数类型都可以添加unsigned修饰符,添加以后对应列数据变成无负号类型,
      值从0开始!!
示例: stu_age tinyint  unsigned COMMENT '年龄字段,tinyint类型,无符号值从0开始', 
      stu_age tinyint  COMMENT '年龄字段,tinyint类型,无符号值从-128开始',  
      unsigned 必须紧贴类型后放置

(2)字符串类型

char 与 varchar 都可以描述字符串,char是定长字符串,指定长度多长,就占用多少个字符,
和字段值的长度无关 。而varchar是变长字符串,指定的长度为最大占用长度 。相对来说,
char的性能会更高些。

如:
1.用户名 username ------> 长度不定, 最长不会超过50
  username varchar(50)
2.性别 gender ---------> 存储值, 不是男,就是女
  gender char(1)
3.手机号 phone --------> 固定长度为11
  phone char(11)

(3)日期时间类型

如:
1.生日字段 birthday
  birthday date
2.创建时间 createtime
  createtime datetime

7. 图形化界面工具DataGrip

通过DDL语句执行在命令进行操作,主要存在以下两点问题:

1. 会影响开发效率 ; 

2. 使用起来,并不直观,并不方便 ;

所以呢,在日常的开发中,会借助于MySQL的图形化界面,来简化开发,提高开发效率。而目前 mysql主流的图形化界面工具,有以下几种:

选择最后一种DataGrip,这种图形化界面工具,功能更加强大,界面提示更加友好, 是使用MySQL的不二之选。

官网:DataGrip: The Cross-Platform IDE for Databases & SQL by JetBrains

8. DML-添加,修改,删除

DML英文全称是Data Manipulation Language(数据操作语言),用来对数据库中表的数据记录进行增、删、改操作。

添加数据(INSERT)

给指定字段添加数据:
   INSERT INTO 表名 (字段名1, 字段名2, ...) VALUES(值1, 值2, ...);
   例如1:给employee表id字段添加数据 
          insert  into employee(id) values (10);
   例如2: 给employee表所有的字段添加数据 
         insert into employee(id,workno,name,gender,age,idcard,entrydate)values
         (1,'1','Itcast','男',10,'123456789012345678','2000-01-01');
给全部字段添加数据:
   INSERT INTO 表名 VALUES(值1, 值2, ...);
   例如:插入数据到employee表,
        insert into employee values(2,'2','张无忌','男',18,'123456789012345670',
        '2005-01-01');
批量添加数据:
   INSERT INTO 表名 (字段名1, 字段名2, ...) VALUES(值1, 值2, ...),(值1, 值2, ...)
   ,(值1, 值2, ...);
给全部字段批量添加数据:
   INSERT INTO 表名 VALUES(值1, 值2, ...),(值1, 值2, ...),(值1, 值2, ...);
   例如:批量插入数据到employee表
        insert into employee values(3,'3','韦一笑','男',38,'123456789012345670',
        '2005-01-01'),(4,'4','赵敏','女',18,'123456789012345670','2005-01-01');
注意事项:
   插入数据时,指定的字段顺序需要与值的顺序是一一对应的。
   字符串和日期型数据应该包含在引号中。
   插入的数据大小,应该在字段的规定范围内。

修改数据(UPDATE)

修改数据:
    UPDATE 表名 SET 字段名1 = 值1 , 字段名2 = 值2 , .... [WHERE 条件];
    例如: 修改id为1的数据,将name修改为itheima
          update employee set name = 'itheima' where id = 1;
          修改id为1的数据, 将name修改为小昭, gender修改为女
          update employee set name = '小昭' , gender = '女' where id = 1;
          将所有的员工入职日期修改为 2008-01-01
          update employee set entrydate = '2008-01-01';
注意事项:
  修改语句的条件可以有,也可以没有,如果没有条件,则会修改整张表的所有数据。

删除数据(DELETE)

删除数据:
   DELETE FROM 表名 [WHERE 条件];
   例如:删除gender为女的员工
         delete from employee where gender = '女';
         删除所有员工 
         delete from employee;
注意事项:
   DELETE语句的条件可以有,也可以没有,如果没有条件,则会删除整张表的所有数据。
   DELETE语句不能删除某一个字段的值(可以使用UPDATE,将该字段值置为NULL即可)。
   当进行删除全部数据操作时,datagrip会提示我们,询问是否确认删除,我们直接点击Execute即可

 9. DQL

DQL英文全称是Data Query Language(数据查询语言),数据查询语言,用来查询数据库中表的记录。

查询关键字: SELECT

在一个正常的业务系统中,查询操作的频次是要远高于增删改的,当我们去访问企业官网、电商网站, 在这些网站中我们所看到的数据,实际都是需要从数据库中查询并展示的。而且在查询的过程中,可能还会涉及到条件、排序、分页等操作。

(1)基本语法

DQL查询语句,语法结构如下:
  SELECT
    字段列表
  FROM
    表名列表
  WHERE
    条件列表
  GROUP BY
    分组字段列表
  HAVING
    分组后条件列表
  ORDER BY
    排序字段列表
  LIMIT
    分页参数

(2)基本查询

在基本查询的DQL语句中,不带任何的查询条件,查询的语法如下:
查询多个字段:
    SELECT 字段1, 字段2, 字段3 ... FROM 表名 ;
    例如: 查询指定字段 name, workno, age并返回
          select name,workno,age from emp;
    SELECT * FROM 表名 ;
    例如: 查询返回所有字段
         select id ,workno,name,gender,age,idcard,workaddressfrom emp;
         select * from emp;
    注意 : * 号代表查询所有字段,在实际开发中尽量少用(不直观、影响效率)。
字段设置别名:
    SELECT 字段1 [AS 别名1] , 字段2 [AS 别名2] ... FROM 表名;
    SELECT 字段1 [别名1] , 字段2 [别名2] ... FROM 表名;
    例如: 查询所有员工的工作地址,起别名
         select workaddress as '工作地址' from emp;
         select workaddress '工作地址' from emp;  -- as可以省略
去除重复记录:
    SELECT DISTINCT 字段列表 FROM 表名;
    例如: 查询公司员工的上班地址有哪些(不要重复)
          select distinct workaddress '工作地址' from emp;

(3)条件查询

语法:SELECT 字段列表 FROM 表名 WHERE 条件列表 ;

  条件: 

  常用的比较运算符如下:

常用的逻辑运算符如下:

常用算数运算法如下:

运算符优先级:

                运算符优先级显示在以下列表中,编号越大优先级越高。优先级高先运算!

                 注意:这是一般情况下的运算符优先级。在实际使用中,如果不确定优

                            先级,可以使用括号来明确运算的顺序!()内优先级最高!

例如:

查询年龄等于 88 的员工
   select * from emp where age = 88;
查询年龄小于 20 的员工信息
   select * from emp where age < 20;
查询年龄小于等于 20 的员工信息
   select * from emp where age <= 20;
查询没有身份证号的员工信息
   select * from emp where idcard is null;
查询有身份证号的员工信息
   select * from emp where idcard is not null;
查询年龄不等于 88 的员工信息
   select * from emp where age != 88;
   select * from emp where age <> 88;
查询年龄在15岁(包含) 到 20岁(包含)之间的员工信息
   select * from emp where age >= 15 && age <= 20;
   select * from emp where age >= 15 and age <= 20;
   select * from emp where age between 15 and 20;
查询性别为 女 且年龄小于 25岁的员工信息
   select * from emp where gender = '女' and age < 25;
查询年龄等于18 或 20 或 40 的员工信息
   select * from emp where age = 18 or age = 20 or age =40;
   select * from emp where age in(18,20,40);
查询姓名为两个字的员工信息 
   select * from emp where name like '__'; 这里是两个_
查询身份证号最后一位是X的员工信息
   select * from emp where idcard like '%X';
   select * from emp where idcard like '_________________X';这里是17个_

(4)聚合函数

   介绍:将一列数据作为一个整体,进行纵向计算

   常见的聚合函数:

   

语法:SELECT 聚合函数(字段列表) FROM 表名 ;
注意 : NULL值是不参与所有聚合函数运算的。
      聚合函数不能嵌套调用。比如不能出现类似"AVG(SUM(字段名称))"形式的调用。

例如:
统计该企业员工数量
  select count(*) from emp; -- 统计的是总记录数
  select count(idcard) from emp; -- 统计的是idcard字段不为null的记录数
  select count(1) from emp; --SQL优化部分会详细讲解
统计该企业员工的平均年龄
  select avg(age) from emp;
统计该企业员工的最大年龄
  select max(age) from emp;
统计该企业员工的最小年龄
  select min(age) from emp;
统计西安地区员工的年龄之和
  select sum(age) from emp where workaddress = '西安';

(5)分组查询

语法:
SELECT 字段列表 FROM 表名 [WHERE 条件] GROUP BY 分组字段名 [HAVING 分组后过滤条件];

where与having区别:
执行时机不同:where是分组之前进行过滤,不满足where条件,不参与分组;而having是分组
             之后对结果进行过滤。
判断条件不同:where不能对聚合函数进行判断,而having可以。

注意事项:
  分组之后,查询的字段一般为聚合函数和分组字段,查询其他字段无任何意义。
  执行顺序: where > 聚合函数 > having 。
  支持多字段分组, 具体语法为 : group by columnA,columnB

例如:
根据性别分组 , 统计男性员工 和 女性员工的数量
   select gender, count(*) from emp group by gender ;
根据性别分组 , 统计男性员工和女性员工的平均年龄
   select gender, avg(age) from emp group by gender ;
查询年龄小于45的员工 , 并根据工作地址分组 , 获取员工数量大于等于3的工作地址
   select workaddress, count(*) address_count from emp where age < 45 group by
   workaddress having address_count >= 3;
统计各个工作地址上班的男性及女性员工的数量
   select workaddress, gender, count(*) '数量' from emp group by gender , 
   workaddress;

(6)排序查询

排序在日常开发中是非常常见的一个操作,有升序排序,也有降序排序。
语法:
   SELECT 字段列表 FROM 表名 ORDER BY 字段1 排序方式1 , 字段2 排序方式2;
排序方式:
  ASC : 升序(默认值)
  DESC: 降序
注意事项:
  如果是升序, 可以不指定排序方式ASC;
  如果是多字段排序,当第一个字段值相同时,才会根据第二个字段进行排序 ;

例如:
根据年龄对公司的员工进行升序排序
  select * from emp order by age asc;
  select * from emp order by age;
根据入职时间, 对员工进行降序排序
  select * from emp order by entrydate desc;
根据年龄对公司的员工进行升序排序 , 年龄相同 , 再按照入职时间进行降序排序
  select * from emp order by age asc , entrydate desc;

(7)分页查询

分页操作在业务系统开发时,也是非常常见的一个功能,我们在网站中看到的各种各样的分页条,
后台都需要借助于数据库的分页操作。

语法:
  SELECT 字段列表 FROM 表名 LIMIT 起始索引, 查询记录数;

注意事项:
  起始索引从0开始,起始索引 = (查询页码 - 1)* 每页显示记录数。
  分页查询是数据库的方言,不同的数据库有不同的实现,MySQL中是LIMIT。
  如果查询的是第一页数据,起始索引可以省略,直接简写为 limit 10。

例如:
查询第1页员工数据, 每页展示10条记录
  select * from emp limit 0,10;
  select * from emp limit 10;
查询第2页员工数据, 每页展示10条记录 --------> (页码-1)*页展示记录数
  select * from emp limit 10,10;

(8)执行顺序

10. DCL 

DCL英文全称是Data Control Language(数据控制语言),用来管理数据库用户、控制数据库的访问权限。


(1)用户管理

查询用户
  select * from mysql.user;
创建用户
  CREATE USER '用户名'@'主机名' IDENTIFIED BY '密码';
  例如:创建用户itcast, 只能够在当前主机localhost访问, 密码123456;
       create user 'itcast'@'localhost' identified by '123456';
       创建用户heima, 可以在任意主机访问该数据库, 密码123456;
       create user 'heima'@'%' identified by '123456';
修改用户密码
  ALTER USER '用户名'@'主机名' IDENTIFIED WITH mysql_native_password BY '新密码';
  例如:修改用户heima的访问密码为1234;
        alter user 'heima'@'%' identified with mysql_native_password by '1234';
删除用户
  DROP USER '用户名'@'主机名' ;
  例如:删除 itcast@localhost 用户
       drop user 'itcast'@'localhost';
注意事项:
  在MySQL中需要通过用户名@主机名的方式,来唯一标识一个用户。
  主机名可以使用 % 通配。
  这类SQL开发人员操作的比较少,主要是DBA( Database Administrator 数据库管理员)使用。

select * from mysql.user的查询结果如下:

其中 Host代表当前用户访问的主机, 如果为localhost, 仅代表只能够在当前本机访问,是不可以远程访问的。 User代表的是访问该数据库的用户名。在MySQL中需要通过Host和User来唯一标识一个用户。


(2)权限控制

MySQL中定义了很多种权限,但是常用的就以下几种:

上述只是简单罗列了常见的几种权限描述,其他权限描述及含义,可以直接参考官方文档

查询权限
  SHOW GRANTS FOR '用户名'@'主机名' ;
  例如:查询 'heima'@'%' 用户的权限
       show grants for 'heima'@'%';
授予权限
  GRANT 权限列表 ON 数据库名.表名 TO '用户名'@'主机名';
  例如: 授予 'heima'@'%' 用户itcast数据库所有表的所有操作权限
         grant all on itcast.* to 'heima'@'%';
撤销权限
  REVOKE 权限列表 ON 数据库名.表名 FROM '用户名'@'主机名';
  例如: 撤销 'heima'@'%' 用户的itcast数据库的所有权限
        revoke all on itcast.* from 'heima'@'%';
注意事项:
  多个权限之间,使用逗号分隔
  授权时, 数据库名和表名可以使用 * 进行通配,代表所有。

三. 函数   

 MySQL中的函数主要分为以下四类: 字符串函数、数值函数、日期函数、流程函数。

1. 字符串函数

MySQL中内置了很多字符串函数,常用的几个如下:

concat : 字符串拼接 
  select concat('Hello' , ' MySQL');   Hello MySQL
lower : 全部转小写
  select lower('Hello'); hello
upper : 全部转大写 
  select upper('Hello'); HELLO
lpad : 左填充
  select lpad('01', 5, '-');  ---01
rpad : 右填充
  select rpad('01', 5, '-'); 01---
trim : 去除空格
  select trim(' Hello MySQL ');Hello MySQL
substring : 截取子字符串
  select substring('Hello MySQL',1,5); Hello

例如:由于业务需求变更,企业员工的工号,统一为5位数,目前不足5位数的全部在前面补0。
      比如:1号员工的工号应该为00001。
      update emp set workno = lpad(workno, 5, '0');

2. 数值函数

常见的数值函数如下: 

ceil:向上取整
  select ceil(1.1); 2
floor:向下取整
  select floor(1.9); 1
mod:取模
  select mod(7,4); 3
rand:获取随机数
  select rand(); 0.08553385556259552
round:四舍五入
  select round(2.344,2); 2.34

例如:通过数据库的函数,生成一个六位数的随机验证码。
     select lpad(round(rand()*1000000 , 0), 6, '0');

3. 日期函数

常见的日期函数如下:

curdate:当前日期
  select curdate();  2024-07-25
curtime:当前时间
  select curtime();  10:54:46
now:当前日期和时间
  select now();  2024-07-25 10:54:52
YEAR , MONTH , DAY:当前年、月、日
  select YEAR(now());  2024
  select MONTH(now());  7
  select DAY(now());  25
date_add:增加指定的时间间隔
  select date_add(now(), INTERVAL 70 YEAR );  2094-07-25 10:55:23
datediff:获取两个日期相差的天数
  select datediff('2021-10-01', '2021-12-01');  -61

例如:查询所有员工的入职天数,并根据入职天数倒序排序。
     思路: 入职天数,就是通过当前日期 - 入职日期,所以需要使用datediff函数来完成。
     select name, datediff(curdate(), entrydate) as 'entrydays' from emp order by
     entrydays desc;

4. 流程函数

流程函数也是很常用的一类函数,可以在SQL语句中实现条件筛选,从而提高语句的效率。

if:
   select if(false, 'Ok', 'Error'); Error
ifnull:
   select ifnull('Ok','Default');  OK
   select ifnull('','Default');  空串
   select ifnull(null,'Default');   Default
case when then else end: 
   例1:
     查询emp表的员工姓名和工作地址 (北京/上海 ----> 一线城市 , 其他 ----> 二线城市)
     select
       name,
       (case workaddress when '北京' then '一线城市' when '上海' then '一线城市' 
       else'二线城市' end ) 
     as '工作地址' from emp;
   例2:统计班级齐个学员的成績。展示的规则如下:
                              >=85,展示优秀
                              >=60,展示及格
                              否则,展示不及挤
   create table score(
       id int comment 'ID',
       name varchar(20) comment '姓名',
       math int comment '数学',
       english int comment '英语',
       chinese int comment '语文'
   ) comment '学员成绩表';
   insert into score(id, name, math, english, chinese) VALUES (1, 'Tom', 67, 
   88, 95), (2, 'Rose' , 23, 66, 90),(3, 'Jack', 56, 98, 76);
   select
      id,
    name,
   (case when math >= 85 then '优秀' when math >=60 then '及格' else '不及格' end)
   '数学',
   (case when english >= 85 then '优秀' when english >=60 then '及格' else '不及格'
   end ) '英语',
   (case when chinese >= 85 then '优秀' when chinese >=60 then '及格' else '不及格'
   end ) '语文'
   from score;

四. 约束

概念:约束是作用于表中字段上的规则,用于限制存储在表中的数据。

目的:保证数据库中数据的正确、有效性和完整性。

分类:

      自增长约束                  限定某个整数类型字段,值自动增长!         AUTO_INCREMENT

注意:约束是作用于表中字段上的,可以在创建表/修改表的时候添加约束。

语法:

非空约束
建表时添加:
  CREATE TABLE 表名称(
      字段名  数据类型 NOT NULL
  );
建表后修改:
  alter table 表名称 modify 字段名 数据类型 not null;
删除:
  alter table 表名称 modify 字段名 数据类型 NULL;
  或 
  alter table 表名称 modify 字段名 数据类型;   不加默认允许为null

默认值约束
建表时添加:
  create table 表名称(
      字段名  数据类型 default 默认值 
  );
建表后修改:
  alter table 表名称 modify 字段名 数据类型 default 默认值;
  如果这个字段原来有非空约束,你还保留非空约束,那么在加默认值约束时,还得保留非空约束,
  否则非空约束就被删除了
  alter table 表名称 modify 字段名 数据类型 default 默认值 not null;
删除:
  alter table 表名称 modify 字段名 数据类型 ;  删除默认值约束,也不保留非空约束
  alter table 表名称 modify 字段名 数据类型  not null;  删除默认值约束,保留非空约束

检查约束
建表时添加:
  create table 表名称(
      字段名  数据类型, check(表达式)     check约束属于表级别,不用添加到列后
  );
建表后修改:
  alter table 表名 add constraint 约束名 CHECK (表达式);  约束名不能重复
删除:
  alter table 表名 drop constraint 约束名

唯一约束
建表时添加:
  create table 表名称(
      字段名  数据类型  unique,  
      字段名  数据类型  unique key
  );
  create table 表名称(
      字段名  数据类型,
      [constraint 约束名] unique key(字段名)
  );
建表后修改:
  ALTER TABLE 表名 ADD CONSTRAINT 约束名 UNIQUE(列名,列名);
删除:
  查看约束
  SELECT * FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS WHERE TABLE_SCHEMA = '库名'
  AND TABLE_NAME = '表名'; 
  删除约束
  ALTER TABLE 表名 DROP CONSTRAINT 约束名;

主键约束
建表时添加:
  create table 表名称(
       字段名  数据类型  primary key,  列级模式
  );
  create table 表名称(
      字段名  数据类型,[constraint 约束名] primary key(字段名) 表级模式
  );
建表后修改:
  ALTER TABLE 表名称 ADD PRIMARY KEY(字段列表);字段列表可以是一个字段,也可以是多个字段
删除:
  删除主键约束,不需要指定主键名,因为一个表只有一个主键,删除主键约束后,非空还存在,唯一消失
  alter table 表名称 drop primary key;  删除主键约束和索引

自增长约束
建表时添加:
  create table 表名称(
      字段名  数据类型  primary key auto_increment,
  );
建表后修改:
  alter table 表名称 modify 字段名 数据类 auto_increment;
删除:
  alter table 表名称 modify 字段名 数据类型;  去掉auto_increment相当于删除

外键约束
建表时添加:
  create table 主表名称(
      字段 数据类型  primary key
  );
  create table 子表名称(
      字段  数据类型  primary key,[CONSTRAINT <外键约束名称>] FOREIGN KEY(外键) 
      references 主表名(主键) [on update xx][on delete xx]
  );
建表后修改:
  alter table 从表名 add [CONSTRAINT 约束名] FOREIGN KEY (从表的字段) references 
  主表名(被引用字段) [on update xx][on delete xx];
删除:
  (1)第一步先查看约束名和删除外键约束
     SELECT * FROM information_schema.table_constraints WHERE table_name =
     '表名称';#查看某个表的约束名
     ALTER TABLE 从表名 DROP FOREIGN KEY 外键约束名;
 (2)第二步查看索引名和删除索引。(注意,只能手动删除)
      SHOW INDEX FROM 表名称; #查看某个表的索引名
      ALTER TABLE 从表名 DROP INDEX 索引名;

例如:根据需求,完成表结构的创建。需求 如下:

对应的建表语句为:
CREATE TABLE tb_user(
   id int AUTO_INCREMENT PRIMARY KEY COMMENT 'ID唯一标识',
   name varchar(10) NOT NULL UNIQUE COMMENT '姓名' ,
   age int check (age > 0 && age <= 120) COMMENT '年龄' ,
   status char(1) default '1' COMMENT '状态',
   gender char(1) COMMENT '性别'
);
在为字段添加约束时,我们只需要在字段之后加上约束的关键字即可,需要关注其语法。
我们执行上面的SQL把表结构创建完成,然后接下来,就可以通过一组数据进行测试,
从而验证一下,约束是否可以生效。
insert into tb_user(name,age,status,gender) values ('Tom1',19,'1','男'),
('Tom2',25,'0','男');
insert into tb_user(name,age,status,gender) values ('Tom3',19,'1','男');
insert into tb_user(name,age,status,gender) values (null,19,'1','男');
insert into tb_user(name,age,status,gender) values ('Tom3',19,'1','男');
insert into tb_user(name,age,status,gender) values ('Tom4',80,'1','男');
insert into tb_user(name,age,status,gender) values ('Tom5',-1,'1','男');
insert into tb_user(name,age,status,gender) values ('Tom5',121,'1','男');
insert into tb_user(name,age,gender) values ('Tom5',120,'男');

外键约束:

   外键:用来让两张表的数据之间建立连接,从而保证数据的一致性和完整性。

   例如:  

    左侧的emp表是员工表,里面存储员工的基本信息,包含员工的ID、姓名、年龄、职位、

    薪资、入职日期、上级主管ID、部门ID,在员工的信息中存储的是部门的ID dept_id,而

    这个部门的ID是关联的部门表dept的主键id,那emp表的dept_id就是外键,关联的是另一张

    表的主键

    注意:目前上述两张表,只是在逻辑上存在这样一层关系;在数据库层面,并未建立外键

    关联, 所以是无法保证数据的一致性和完整性的。

    语法:

添加外键:
CREATE TABLE 表名(
   字段名 数据类型,
   ...
   [CONSTRAINT] [外键名称] FOREIGN KEY (外键字段名) REFERENCES 主表 (主表列名)
);
ALTER TABLE 表名 ADD CONSTRAINT 外键名称 FOREIGN KEY (外键字段名) REFERENCES 
主表 (主表列名) ;
例如:为emp表的dept_id字段添加外键约束,关联dept表的主键id。
     alter table emp add constraint fk_emp_dept_id foreign key (dept_id)
     references dept(id);

删除外键:
  ALTER TABLE 表名 DROP FOREIGN KEY 外键名称;
例如:删除emp表的外键fk_emp_dept_id。
     alter table emp drop foreign key fk_emp_dept_id;

外键删除更新行为:

添加了外键之后,再删除父表数据时产生的约束行为,我们就称为删除/更新行为。具体的删除/更新行为有以下几种:

 具体语法为:

ALTER TABLE 表名 ADD CONSTRAINT 外键名称 FOREIGN KEY (外键字段) REFERENCES
主表名 (主表字段名) ON UPDATE CASCADE ON DELETE CASCADE;

为emp表的dept_id字段添加外键约束,关联dept表的主键id,并设置为cascade:
alter table emp add constraint fk_emp_dept_id foreign key (dept_id) references
dept(id) on update cascade on delete cascade ;
为emp表的dept_id字段添加外键约束,关联dept表的主键id,并设置为set null:
alter table emp add constraint fk_emp_dept_id foreign key (dept_id) references
dept(id) on update set null on delete set null ;

 五. 多表查询

1. 多表关系介绍:

项目开发中,在进行数据库表结构设计时,会根据业务需求及业务模块之间的关系,分析并设计表结 构,由于业务之间相互关联,所以各个表结构之间也存在着各种联系,基本上分为三种:

    1️⃣一对多(多对一)

    2️⃣多对多  

    3️⃣一对一

一对多:

    案例: 部门 与 员工的关系

    关系: 一个部门对应多个员工,一个员工对应一个部门

    实现: 在多的一方建立外键,指向一的一方的主键

多对多:

   案例: 学生 与 课程的关系

   关系: 一个学生可以选修多门课程,一门课程也可以供多个学生选择

   实现: 建立第三张中间表,中间表至少包含两个外键,分别关联两方主键

一对一:

   案例: 用户 与 用户详情的关系

   关系: 一对一关系,多用于单表拆分,将一张表的基础字段放在一张表中,其他详情字段放

            在另 一张表中,以提升操作效率

   实现: 在任意一方加入外键,关联另外一方的主键,并且设置外键为唯一的(UNIQUE)

2. 多表查询

(1)多表查询概括

多表查询就是指从多张表中查询数据。

原来查询单表数据,执行的SQL形式为:select * from e mp; 那么我们要执行多表查询,就只需要使用逗号分隔多张表即可,如: select * from emp , dept ; 

但是我们看到查询结果有一些问题,查询到的是员emp所有的记录与dept所有记录的所有组合情况,这种现象称之为笛卡尔积

笛卡尔积: 笛卡尔乘积是指在数学中,两个集合A集合 和 B集合的所有组合情况。

而在多表查询中,我们是需要消除无效的笛卡尔积的,只保留两张表关联部分的数据。

在SQL语句中,如何来去除无效的笛卡尔积呢?

我们可以给多表查询加上连接查询的条件即可。
select * from emp , dept where emp.dept_id = dept.id;
分类:

   连接查询

       内连接:相当于查询A、B交集部分数据

       外连接:

           左外连接:查询左表所有数据,以及两张表交集部分数据

           右外连接:查询右表所有数据,以及两张表交集部分数据

       自连接:当前表与自身的连接查询,自连接必须使用表别名

   子查询


(2)多表查询-内连接

内连接查询的是两张表交集部分的数据。(也就是绿色部分的数据)

内连接的语法分为两种: 隐式内连接显式内连接。先来学习一下具体的语法结构。

隐式内连接
   SELECT 字段列表 FROM 表1 , 表2 WHERE 条件 ... ;
   例如:查询每一个员工的姓名 , 及关联的部门的名称 (隐式内连接实现)
         表结构: emp , dept
         连接条件: emp.dept_id = dept.id
         select emp.name , dept.name from emp , dept where emp.dept_id = dept.id;
         -- 为每一张表起别名,简化SQL编写
         select e.name,d.name from emp e , dept d where e.dept_id = d.id;
    
显式内连接
   SELECT 字段列表 FROM 表1 [ INNER ] JOIN 表2 ON 连接条件 ... ;
   例如:查询每一个员工的姓名 , 及关联的部门的名称 (显式内连接实现)
         表结构: emp , dept
         连接条件: emp.dept_id = dept.id
         select e.name, d.name from emp e inner join dept d on e.dept_id = d.id;
         -- 为每一张表起别名,简化SQL编写
         select e.name, d.name from emp e join dept d on e.dept_id = d.id;

注意:一旦为表起了别名,就不能再使用表名来指定对应的字段了,此时只能够使用别名来指定字段。

(3)多表查询-外连接 

外连接分为两种,分别是:左外连接 和 右外连接。具体的语法结构为:

左外连接 
  左外连接相当于查询表1(左表)的所有数据,当然也包含表1和表2交集部分的数据。
  SELECT 字段列表 FROM 表1 LEFT [ OUTER ] JOIN 表2 ON 条件 ... ;
  例如:查询emp表的所有数据, 和对应的部门信息
        表结构: emp, dept
        连接条件: emp.dept_id = dept.id
        select e.*, d.name from emp e left outer join dept d on e.dept_id = d.id;
        select e.*, d.name from emp e left join dept d on e.dept_id = d.id
右外连接
  右外连接相当于查询表2(右表)的所有数据,当然也包含表1和表2交集部分的数据。
  SELECT 字段列表 FROM 表1 RIGHT [ OUTER ] JOIN 表2 ON 条件 ... ;
  例如:查询dept表的所有数据, 和对应的员工信息(右外连接)
        表结构: emp, dept
        连接条件: emp.dept_id = dept.id
        select d.*, e.* from emp e right outer join dept d on e.dept_id = d.id;
        select d.*, e.* from dept d left outer join emp e on e.dept_id = d.id;

注意事项:
左外连接和右外连接是可以相互替换的,只需要调整在连接查询时SQL中,表结构的先后顺
序就可以了。而我们在日常开发使用时,更偏向于左外连接。

(4)多表查询-自连接

自连接查询:
   自连接查询,顾名思义,就是自己连接自己,也就是把一张表连接查询多次。
   而对于自连接查询,可以是内连接查询,也可以是外连接查询。
   语法:SELECT 字段列表 FROM 表A 别名A JOIN 表A 别名B ON 条件 ... ;
   例如1:查询员工 及其 所属领导的名字
         表结构: emp
         select a.name , b.name from emp a , emp b where a.managerid = b.id;
   例如2:查询所有员工 emp 及其领导的名字 emp , 如果员工没有领导, 也需要查询出来
          表结构: emp a , emp b
          select a.name '员工', b.name '领导' from emp a left join emp b on 
          a.managerid = b.id;
注意事项:
在自连接查询中,必须要为表起别名,要不然我们不清楚所指定的条件、返回的字段,到底
是哪一张表的字段。

(5)多表查询-联合查询union

对于union查询,就是把多次查询的结果合并起来,形成一个新的查询结果集。
语法:
  SELECT 字段列表 FROM 表A ...
  UNION [ ALL ]
  SELECT 字段列表 FROM 表B ....;
  例如: 将薪资低于 5000 的员工 , 和 年龄大于 50 岁的员工全部查询出来.
         select * from emp where salary < 5000
         union all
         select * from emp where age > 50;

对于联合查询的多张表的列数必须保持一致,字段类型也需要保持一致。
union all 会将全部的数据直接合并在一起,union 会对合并之后的数据去重。

(6)多表查询-子查询

  ①概述
概念:
  SQL语句中嵌套SELECT语句,称为嵌套查询,又称子查询。
  SELECT * FROM t1 WHERE column1 = ( SELECT column1 FROM t2 );
  子查询外部的语句可以是INSERT / UPDATE / DELETE / SELECT 的任何一个。

分类:
   根据子查询结果不同,分为:
     标量子查询(子查询结果为单个值)
     列子查询(子查询结果为一列)
     行子查询(子查询结果为一行)
     表子查询(子查询结果为多行多列)
   根据子查询位置,分为:
     WHERE之后
     FROM之后
     SELECT之后
  ②标量子查询
子查询返回的结果是单个值(数字、字符串、日期等),最简单的形式,这种子查询称为标量子查询。
常用的操作符:= <> > >= < <= 

例1:查询 "销售部" 的所有员工信息
      完成这个需求时,我们可以将需求分解为两步
      ①查询 "销售部" 部门ID
       select id from dept where name = '销售部';
      ②根据 "销售部" 部门ID, 查询员工信息
       select * from emp where dept_id=(select id from dept where name ='销售部');
例2:查询在 "方东白" 入职之后的员工信息
     完成这个需求时,我们可以将需求分解为两步:
     ①查询方东白的入职日期
       select entrydate from emp where name = '方东白';
     ②查询指定入职日期之后入职的员工信息
       select * from emp where entrydate > (select entrydate from emp where name
       = '方东白');
 ③列子查询

    子查询返回的结果是一列(可以是多行),这种子查询称为列子查询。

    常用的操作符:IN 、NOT IN 、 ANY 、SOME 、 ALL

例1:查询 "销售部" 和 "市场部" 的所有员工信息
     分解为以下两步:
     ①.查询 "销售部" 和 "市场部" 的部门ID
     select id from dept where name = '销售部' or name = '市场部';
     ②.根据部门ID, 查询员工信息
     select * from emp where dept_id in (select id from dept where name ='销售部' 
     or name = '市场部');

例2:查询比 财务部 所有人工资都高的员工信息
    分解为以下两步:
    ①.查询所有 财务部 人员工资
      select id from dept where name = '财务部';
      select salary from emp where dept_id = (select id from dept where name = 
      '财务部');
    ②.比 财务部 所有人工资都高的员工信息
      select * from emp where salary > all ( select salary from emp where
      dept_id = (select id from dept where name = '财务部') );

例3:查询比研发部其中任意一人工资高的员工信息
    分解为以下两步:
    ①.查询研发部所有人工资
      select salary from emp where dept_id = (select id from dept where name 
      = '研发部');
    ②.比研发部其中任意一人工资高的员工信息
      select * from emp where salary > any ( select salary from emp where 
      dept_id =(select id from dept where name = '研发部') );
  ④行子查询
子查询返回的结果是一行(可以是多列),这种子查询称为行子查询。
常用的操作符:= 、<> 、IN 、NOT IN

例:查询与 "张无忌" 的薪资及直属领导相同的员工信息 ;
   这个需求同样可以拆解为两步进行:
   ①.查询 "张无忌" 的薪资及直属领导
     select salary, managerid from emp where name = '张无忌';
   ②.查询与 "张无忌" 的薪资及直属领导相同的员工信息 ;
     select * from emp where (salary,managerid) = (select salary, managerid
     from emp where name = '张无忌');
  ⑤表子查询
子查询返回的结果是多行多列,这种子查询称为表子查询。
常用的操作符:IN

例1:查询与 "鹿杖客" , "宋远桥" 的职位和薪资相同的员工信息
     分解为两步执行:
     ①.查询 "鹿杖客" , "宋远桥" 的职位和薪资
       select job, salary from emp where name = '鹿杖客' or name = '宋远桥';
     ②.查询与 "鹿杖客" , "宋远桥" 的职位和薪资相同的员工信息
       select * from emp where (job,salary) in ( select job, salary from emp
       where name ='鹿杖客' or name = '宋远桥' );

例2:查询入职日期是 "2006-01-01" 之后的员工信息 , 及其部门信息
    分解为两步执行:
    ①.入职日期是 "2006-01-01" 之后的员工信息
      select * from emp where entrydate > '2006-01-01';
    ②.查询这部分员工, 对应的部门信息;
      select e.*, d.* from (select * from emp where entrydate > '2006-01-01')
      e left join dept d on e.dept_id = d.id ;

六.  事务

1. 事务简介

事务是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系 统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。

就比如: 张三给李四转账1000块钱,张三银行账户的钱减少1000,而李四银行账户的钱要增加 1000。 这一组操作就必须在一个事务的范围内,要么都成功,要么都失败。

正常情况: 转账这个操作, 需要分为以下这么三步来完成 , 三步完成之后, 张三减少1000, 而李四 增加1000, 转账成功

异常情况: 转账这个操作, 也是分为以下这么三步来完成 , 在执行第三步是报错了, 这样就导致张三减少1000块钱, 而李四的金额没变, 这样就造成了数据的不一致, 就出现问题了。

为了解决上述的问题,就需要通过数据的事务来完成,我们只需要在业务逻辑执行之前开启事务,执行完毕后提交事务。如果执行过程中报错,则回滚事务,把数据恢复到事务开始之前的状态。

注意: 默认MySQL的事务是自动提交的,也就是说,当执行完一条DML语句时,MySQL会立即隐式的提交事务。

2. 操作演示

数据准备:

drop table if exists account;
create table account(
   id int primary key AUTO_INCREMENT comment 'ID',
   name varchar(10) comment '姓名',
   money double(10,2) comment '余额'
) comment '账户表';
insert into account(name, money) VALUES ('张三',2000), ('李四',2000);

未控制事务(测试正常情况):

-- 1. 查询张三余额
select * from account where name = '张三';
-- 2. 张三的余额减少1000
update account set money = money - 1000 where name = '张三';
-- 3. 李四的余额增加1000
update account set money = money + 1000 where name = '李四';

测试完毕之后检查数据的状态, 可以看到数据操作前后是一致的。

测试异常情况:

-- 1. 查询张三余额
select * from account where name = '张三';
-- 2. 张三的余额减少1000
update account set money = money - 1000 where name = '张三';
出错了....
-- 3. 李四的余额增加1000
update account set money = money + 1000 where name = '李四';

我们把数据都恢复到2000, 然后再次一次性执行上述的SQL语句(出错了.... 这句话不符合SQL语 法,执行就会报错),检查最终的数据情况, 发现数据在操作前后不一致了。

控制事务一:

查看/设置事务提交方式
  SELECT @@autocommit ;
  SET @@autocommit = 0 ;  1为自动提交,0为手动提交
提交事务
   COMMIT;
回滚事务
   ROLLBACK;

注意:上述的这种方式,我们是修改了事务的自动提交行为, 把默认的自动提交修改为了手动提
交, 此时我们执行的DML语句都不会提交, 需要手动的执行commit进行提交。

控制事务二:

开启事务
  START TRANSACTION 或 BEGIN ;
提交事务
  COMMIT;
回滚事务
  ROLLBACK;

用控制事务做:

-- 开启事务
start transaction
-- 1. 查询张三余额
select * from account where name = '张三';
-- 2. 张三的余额减少1000
update account set money = money - 1000 where name = '张三';
-- 3. 李四的余额增加1000
update account set money = money + 1000 where name = '李四';
-- 如果正常执行完毕, 则提交事务
commit;
-- 如果执行过程中报错, 则回滚事务
-- rollback;

3. 四大特性ACID

原子性(Atomicity):事务是不可分割的最小操作单元,要么全部成功,要么全部失败。

一致性(Consistency):事务完成时,必须使所有的数据都保持一致状态。

隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行。

持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。

上述就是事务的四大特性,简称ACID。

4. 并发事务问题

赃读:一个事务读到另外一个事务还没有提交的数据。

          比如:B读取到了A未提交的数据。

不可重复读:一个事务先后读取同一条记录,但两次读取的数据不同,称之为不可重复读。

                     比如:事务A两次读取同一条记录,但是读取到的数据却是不一样的

幻读:一个事务按照条件查询数据时,没有对应的数据行,但是在插入数据时,又发现这行数据已经存在,好像出现了 "幻影"。

5. 并发事务隔离级别 

 为了解决并发事务所引发的问题,在数据库中引入了事务隔离级别。主要有以下几种:

查看事务隔离级别
  SELECT @@TRANSACTION_ISOLATION;
设置事务隔离级别
  SET [SESSION | GLOBAL] TRANSACTION ISOLATION LEVEL {READ UNCOMMITTED |
  READ COMMITTED | REPEATABLE READ | SERIALIZABLE}
注意:事务隔离级别越高,数据越安全,但是性能越低。

七. 存储引擎

 1. MySQL体系结构

连接层:
最上层是一些客户端和链接服务,主要完成一些类似于连接处理、授权认证、及相关的安全方案。服务器也会为安全接入的每个客户端验证它所具有的操作权限。

服务层:
第二层架构主要完成大多数的核心服务功能,如SQL接口,并完成缓存的查询,SQL的分析和优化,部分内置函数的执行。所有跨存储引擎的功能也在这一层实现,如过程、函数等。
引擎层:
存储引擎真正的负责了MySQL中数据的存储和提取,服务器通过API和存储引擎进行通信。不同的存储引擎具有不同的功能,这样我们可以根据自己的需要,来选取合适的存储引擎。
存储层:
主要是将数据存储在文件系统之上,并完成与存储引擎的交互。

2. 存储引擎简介

存储引擎   就是存储数据、建立索引、更新/查询数据等技术的实现方式 。存储引擎是基于表的,而不是基于库的,所以存储引擎也可被称为表类型。我们可以在创建表的时候,来指定选择的存储引擎,如果 没有指定将自动选择默认的存储引擎。

建表时指定存储引擎:
CREATE TABLE 表名(
   字段1 字段1类型 [ COMMENT 字段1注释 ] ,
   ......
   字段n 字段n类型 [COMMENT 字段n注释 ]
) ENGINE = INNODB [ COMMENT 表注释 ] ;

例如:
创建表 my_myisam , 并指定MyISAM存储引擎
create table my_myisam(
   id int,
   name varchar(10)
) engine = MyISAM ;

查询当前数据库支持的存储引擎:
show engines;

注意:创建表时,即使我们没有指定存储疫情,数据库也会自动选择默认的存储引擎,默认为InnoDB

3. 存储引擎特点

(1)InnoDB

介绍: InnoDB是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL 5.5 之后,InnoDB是默认的 MySQL 存储引擎。

特点: DML操作遵循ACID模型,支持事务;

         行级锁,提高并发访问性能;

         支持外键FOREIGN KEY约束,保证数据的完整性和正确性;

文件: xxx.ibd:xxx代表的是表名,innoDB引擎的每张表都会对应这样一个表空间文件,存储该表的表结 构(frm-早期的 、sdi-新版的)、数据和索引。

参数:innodb_file_per_table

show variables like 'innodb_file_per_table';

  如果该参数开启,代表对于InnoDB引擎的表,每一张表都对应一个ibd文件。 我们直接打开

  MySQL的 数据存放目录 , 目录下有很多文件夹,不同的文件夹代表不同的数据库,我们

  直接打开某个表的文件夹。

  例如:     

   可以看到里面有很多的ibd文件,每一个ibd文件就对应一张表,比如:我们有一张表

   account,就有这样的一个account.ibd文件,而在这个ibd文件中不仅存放表结构、数据,

   还会存放该表对应的 索引信息。 而该文件是基于二进制存储的,不能直接基于记事本打

   开,我们可以使用mysql提供的一 个指令 ibd2sdi ,通过该指令就可以从ibd文件中提取sdi

   信息,而sdi数据字典信息中就包含该表的表结构。

逻辑存储结构:

   表空间 : InnoDB存储引擎逻辑结构的最高层,ibd文件其实就是表空间文件,在表空间中可

   以 包含多个Segment段。

   段 : 表空间是由各个段组成的, 常见的段有数据段、索引段、回滚段等。InnoDB中对于段

   的管 理,都是引擎自身完成,不需要人为对其控制,一个段中包含多个区。

   区 : 区是表空间的单元结构,每个区的大小为1M。 默认情况下, InnoDB存储引擎页大小

   为 16K, 即一个区中一共有64个连续的页。

   页 : 页是组成区的最小单元,页也是InnoDB存储引擎磁盘管理的最小单元,每个页的大小

   默 认为 16KB。为了保证页的连续性,InnoDB 存储引擎每次从磁盘申请 4-5 个区。

   行 : InnoDB 存储引擎是面向行的,也就是说数据是按行进行存放的,在每一行中除了定义

   表时 所指定的字段以外,还包含两个隐藏字段(后面会详细介绍)。


(2)MyISAM

介绍: MyISAM是MySQL早期的默认存储引擎

特点:不支持事务,不支持外键

           支持表锁,不支持行锁

           访问速度快

 文件: xxx.sdi:存储表结构信息

         xxx.MYD: 存储数据

         xxx.MYI: 存储索引


(3)Memory

介绍: Memory引擎的表数据时存储在内存中的,由于受到硬件问题、或断电问题的影响,只能将这些表作为 临时表或缓存使用。

特点: 内存存放

          hash索引(默认)

文件: xxx.sdi:存储表结构信息


(4)区别及特点

4. 存储引擎选择 

在选择存储引擎时,应该根据应用系统的特点选择合适的存储引擎。对于复杂的应用系统,还可以根据 实际情况选择多种存储引擎进行组合。

InnoDB: 是Mysql的默认存储引擎,支持事务、外键。如果应用对事务的完整性有比较高的要求, 在并发条件下要求数据的一致性,数据操作除了插入和查询之外,还包含很多的更新、删除操作,那么InnoDB存储引擎是比较合适的选择。

MyISAM : 如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性、并发性要求不是很高,那么选择这个存储引擎是非常合适的。

MEMORY:将所有数据保存在内存中,访问速度快,通常用于临时表及缓存。MEMORY的缺陷就是 对表的大小有限制,太大的表无法缓存在内存中,而且无法保障数据的安全性。

八. 索引

 1. 索引概况

索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足 特定查找算法的数据结构,这些数据结构以某种方 式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。

演示:

假如我们要执行的SQL语句为 : select * from user where age = 45;

在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为全表扫描,性能很低。

如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建立一个二叉树的索引结构。此时我们在进行查询时,只需要扫描三次就可以找到数据了,极大的提高的查询的效率。

备注: 这里我们只是假设索引的结构是 二叉树,介绍一下索引的大概原理,只是一个示意图,

特点:

2. 索引结构 

(1)概述

MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:

上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持情况。

注意: 我们平常所说的索引,如果没有特别指明,都是指B+tree结构组织的索引。


(2)B-tree

①二叉树和红黑树:

    所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree

②B-Tree: 

    B-Tree,B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多

    叉。 以一颗最大度数(max-degree)为5(5阶)的b-tree为例(树的度数指的是一个节点的

    子节点个数。),那这个B树每个节点最多存储4个key,5 个指针:

     我们可以通过一个数据结构可视化的网站来简单演示一下。     https://www.cs.usfca.edu/~galles/visualization/BTree.html

     特点: 5阶的B树,每一个节点最多存储4个key,对应5个指针。

                 一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。

                 在B树中,非叶子节点和叶子节点都会存放数据。

③B+Tree:

    B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(4阶)的b+tree为

    例,来看一下其结构示意图:

    我们可以看到,两部分:

           绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。

           红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。

    我们可以通过一个数据结构可视化的网站来简单演示一下。    https://www.cs.usfca.edu/~galles/visualization/BTree.html

   

     MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向

     相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利

     于排序。

(3)hash

MySQL中除了支持B+Tree索引,还支持一种索引类型---Hash索引。

哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在 hash表中

如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。

特点: 1️⃣Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,...)

            2️⃣无法利用索引完成排序操作 

            3️⃣查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要

                 高于B+tree索引

存储引擎支持: 在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。

为什么InnoDB存储引擎选择使用B+tree索引结构?

    1️⃣相对于二叉树,层级更少,搜索效率高;

    2️⃣对于B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的

         键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低;

    3️⃣相对Hash索引,B+tree支持范围匹配及排序操作;

3. 分类 

索引分类:

在MySQL数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。 

聚集索引&二级索引:

而在在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

聚集索引选取规则:

   1️⃣如果存在主键,主键索引就是聚集索引。

   2️⃣如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。

   3️⃣如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的

        聚集索引。

聚集索引和二级索引的具体结构如下:

聚集索引的叶子节点下挂的是这一行的数据 。

二级索引的叶子节点下挂的是该字段值对应的主键值。

接下来,我们来分析一下,当我们执行如下的SQL语句时,具体的查找过程是什么样子的。

具体过程如下:

    ①. 由于是根据name字段进行查询,所以先根据name='Arm'到name字段的二级索引中进

          行匹配查找。但是在二级索引中只能查找到 Arm 对应的主键值 10。

    ②. 由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应

         的记录,最终找到10对应的行row。

    ③. 最终拿到这一行的数据,直接返回即可。

回表查询: 这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取数据的方式,就称之为回表查询。


思考题1: 以下两条SQL语句,那个执行效率高? 为什么?

                A. select * from user where id = 10 ;

                B. select * from user where name = 'Arm' ;

                备注: id为主键,name字段创建的有索引;

解答: A 语句的执行性能要高于B语句。 因为A语句直接走聚集索引,直接返回数据。 而B语句需要先查询name字段的二级索引,然 后再查询聚集索引,也就是需要进行回表查询。

思考题2: InnoDB主键索引的B+tree高度为多高呢?

假设:

     一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB的指针占用6个字节的空

     间,主键即使为bigint,占用字节数为8。

     高度为2: n * 8 + (n + 1) * 6 = 16*1024 , 算出n约为 1170

                      1171* 16 = 18736 

                       也就是说,如果树的高度为2,则可以存储 18000 多条记录。

     高度为3: 1171 * 1171 * 16 = 21939856

                       也就是说,如果树的高度为3,则可以存储 2200w 左右的记录。

4. 语法

创建索引
  CREATE [UNIQUE | FULLTEXT] INDEX index_name ON table_name (index_col_name,...);
查看索引
  SHOW INDEX FROM table_name ;
删除索引
  DROP INDEX index_name ON table_name ;

例如:

先来创建一张表 tb_user,并且查询测试数据:
create table tb_user
(
    id         int primary key auto_increment comment '主键',
    name       varchar(50) not null comment '用户名',
    phone      varchar(11) not null comment '手机号',
    email      varchar(100) comment '邮箱',
    profession varchar(11) comment '专业',
    age        tinyint unsigned comment '年龄',
    gender     char(1) comment '性别 , 1: 男, 2: 女',
    status     char(1) comment '状态',
    createtime datetime comment '创建时间'
) comment '系统用户表';
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('吕布', '17799990000', 'lvbu666@163.com', '软件工程', 23, '1',
        '6', '2001-02-02 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('曹操', '17799990001', 'caocao666@qq.com', '通讯工程', 33,
        '1', '0', '2001-03-05 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('赵云', '17799990002', '17799990@139.com', '英语', 34, '1',
        '2', '2002-03-02 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('孙悟空', '17799990003', '17799990@sina.com', '工程造价', 54,
        '1', '0', '2001-07-02 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('花木兰', '17799990004', '19980729@sina.com', '软件工程', 23,
        '2', '1', '2001-04-22 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('大乔', '17799990005', 'daqiao666@sina.com', '舞蹈', 22, '2',
        '0', '2001-02-07 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('露娜', '17799990006', 'luna_love@sina.com', '应用数学', 24,
        '2', '0', '2001-02-08 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('程咬金', '17799990007', 'chengyaojin@163.com', '化工', 38,
        '1', '5', '2001-05-23 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('项羽', '17799990008', 'xiaoyu666@qq.com', '金属材料', 43,
        '1', '0', '2001-09-18 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('白起', '17799990009', 'baiqi666@sina.com', '机械工程及其自动
化', 27, '1', '2', '2001-08-16 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('韩信', '17799990010', 'hanxin520@163.com', '无机非金属材料工
程', 27, '1', '0', '2001-06-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('荆轲', '17799990011', 'jingke123@163.com', '会计', 29, '1',
        '0', '2001-05-11 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('兰陵王', '17799990012', 'lanlinwang666@126.com', '工程造价',
        44, '1', '1', '2001-04-09 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('狂铁', '17799990013', 'kuangtie@sina.com', '应用数学', 43,
        '1', '2', '2001-04-10 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('貂蝉', '17799990014', '84958948374@qq.com', '软件工程', 40,
        '2', '3', '2001-02-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('妲己', '17799990015', '2783238293@qq.com', '软件工程', 31,
        '2', '0', '2001-01-30 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('芈月', '17799990016', 'xiaomin2001@sina.com', '工业经济', 35,
        '2', '0', '2000-05-03 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('嬴政', '17799990017', '8839434342@qq.com', '化工', 38, '1',
        '1', '2001-08-08 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('狄仁杰', '17799990018', 'jujiamlm8166@163.com', '国际贸易',
        30, '1', '0', '2007-03-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('安琪拉', '17799990019', 'jdodm1h@126.com', '城市规划', 51,
        '2', '0', '2001-08-15 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('典韦', '17799990020', 'ycaunanjian@163.com', '城市规划', 52,
        '1', '2', '2000-04-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('廉颇', '17799990021', 'lianpo321@126.com', '土木工程', 19,
        '1', '3', '2002-07-18 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('后羿', '17799990022', 'altycj2000@139.com', '城市园林', 20,
        '1', '0', '2002-03-10 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
                     createtime)
VALUES ('姜子牙', '17799990023', '37483844@qq.com', '工程造价', 29,
        '1', '4', '2003-05-26 00:00:00');

数据准备好了之后,接下来,我们就来完成如下需求:
  name字段为姓名字段,该字段的值可能会重复,为该字段创建索引。
    CREATE INDEX idx_user_name ON tb_user(name);
  phone手机号字段的值,是非空,且唯一的,为该字段创建唯一索引。 
    CREATE UNIQUE INDEX idx_user_phone ON tb_user(phone);
  为profession、age、status创建联合索引。
    CREATE INDEX idx_user_pro_age_sta ON tb_user(profession,age,status);
  为email建立合适的索引来提升查询效率。
    CREATE INDEX idx_email ON tb_user(email);
  完成上述的需求之后,我们再查看tb_user表的所有的索引数据。
    show index from tb_user;

5. 性能分析 

(1)SQL执行频率

MySQL 客户端连接成功后,通过 show [session | global] status 命令可以提供服务器状态信 息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:

-- session 是查看当前会话 ;
-- global 是查询全局数据 ;
SHOW GLOBAL STATUS LIKE 'Com_______';

Com_delete: 删除次数
Com_insert: 插入次数
Com_select: 查询次数
Com_update: 更新次数

通过上述指令,我们可以查看到当前数据库到底是以查询为主,还是以增删改为主,从而为数据库优化提供参考依据。 如果是以增删改为主,我们可以考虑不对其进行索引的优化。 如果是以查询为主,那么就要考虑对数据库的索引进行优化了。

(2)慢查询日志

慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有 SQL语句的日志,MySQL的慢查询日志默认没有开启

查看开启情况:show variables like 'slow query_log';

如果要开启慢查询日志,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:

开启MySQL慢日志查询开关
slow_query_log=1
设置慢日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
long_query_time=2

配置完毕之后,通过以下指令重新启动MySQL服务器进行测试,查看慢日志文件中记录的信息 /var/lib/mysql/localhost-slow.log。

systemctl restart mysqld

然后,再次查看开关情况,慢查询日志就已经打开了。

(3)profile详情

show profiles 能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。通过have_profiling
参数,能够看到当前MySQL是否支持profile操作:
SELECT @@have_profiling ;

可以看到,当前MySQL是支持 profile操作的,但是开关是关闭的。可以通过set语句在
session/global级别开启profiling:
SET profiling = 1;

开关已经打开了,接下来,我们所执行的SQL语句,都会被MySQL记录,并记录执行时间消耗到哪儿去
了。 我们直接执行如下的SQL语句:
select * from tb_user;
select * from tb_user where id = 1;
select * from tb_user where name = '白起';
select count(*) from tb_sku;

执行一系列的业务SQL的操作,然后通过如下指令查看指令的执行耗时:
-- 查看每一条SQL的耗时基本情况
   show profiles;
-- 查看指定query_id的SQL语句各个阶段的耗时情况
   show profile for query query_id;
-- 查看指定query_id的SQL语句CPU的使用情况
   show profile cpu for query query_id;

查看每一条SQL的耗时情况:

查看指定SQL各个阶段的耗时情况 :

(4)explain

EXPLAIN 或者 DESC命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行 过程中表如何连接和连接的顺序。

语法:直接在select语句之前加上关键字 explain / desc
     EXPLAIN SELECT 字段列表 FROM 表名 WHERE 条件 ;

Explain 执行计划中各个字段的含义:

 6. 使用规则

(1)验证索引效率

在讲解索引的使用原则之前,先通过一个简单的案例,来验证一下索引,看看是否能够通过索引来提升数据查询性能。在演示的时候,我们还是使用之前准备的一张表 tb_sku , 在这张表中准备了1000w 的记录

这张表中id为主键,有主键索引,而其他字段是没有建立索引的。 我们先来查询其中的一条记录,看看里面的字段情况,执行如下SQL:

 select * from tb_sku where id = 1\G;

可以看到即使有1000w的数据,根据id进行数据查询,性能依然很快,因为主键id是有索引的。 那么接下来,我们再来根据 sn 字段进行查询,执行如下SQL:

SELECT * FROM tb_sku WHERE sn = '100000003145001';

我们可以看到根据sn字段进行查询,查询返回了一条数据,结果耗时 20.78sec,就是因为sn没有索引,而造成查询效率很低。 那么我们可以针对于sn字段,建立一个索引,建立了索引之后,我们再次根据sn进行查询,再来看一 下查询耗时情况。

创建索引:

create index idx_sku_sn on tb_sku(sn) ;

然后再次执行相同的SQL语句,再次查看SQL的耗时。

SELECT * FROM tb_sku WHERE sn = '100000003145001';

我们明显会看到,sn字段建立了索引之后,查询性能大大提升。建立索引前后,查询耗时都不是一个数量级的。

(2)最左前缀法则

如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始, 并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。

以 tb_user 表为例,我们先来查看一下之前 tb_user 表所创建的索引。

在 tb_user 表中,有一个联合索引,这个联合索引涉及到三个字段,顺序分别为:profession, age,status。

对于最左前缀法则指的是,查询时,最左变的列,也就是profession必须存在,否则索引全部失效。 而且中间不能跳过某一列,否则该列后面的字段索引将失效。 接下来,我们来演示几组案例,看一下具体的执行计划:

explain select * from tb_user where profession = '软件工程' and age = 31 and 
status = '0';

 explain select * from tb_user where profession = '软件工程' and age = 31;

explain select * from tb_user where profession = '软件工程';

以上的这三组测试中,我们发现只要联合索引最左边的字段 profession存在,索引就会生效,只不过索引的长度不同。 而且由以上三组测试,我们也可以推测出profession字段索引长度为47、age 字段索引长度为2、status字段索引长度为5。

explain select * from tb_user where age = 31 and status = '0';

explain select * from tb_user where status = '0';

而通过上面的这两组测试,我们也可以看到索引并未生效,原因是因为不满足最左前缀法则,联合索引最左边的列profession不存在。

explain select * from tb_user where profession = '软件工程' and status = '0';

上述的SQL查询时,存在profession字段,最左边的列是存在的,索引满足最左前缀法则的基本条件。但是查询时,跳过了age这个列,所以后面的列索引是不会使用的,也就是索引部分生效,所以索引的长度就是47。 

思考题:

当执行SQL语句: explain select * from tb_user where age = 31 and status = '0' and profession = '软件工程'; 时,是否满足最左前缀法则,走不走上述的联合索引,索引长度?

可以看到,是完全满足最左前缀法则的,索引长度54,联合索引是生效的。

注意 : 最左前缀法则中指的最左边的列,是指在查询时,联合索引的最左边的字段(即是第一个字段)必须存在,与我们编写SQL时,条件编写的先后顺序无关。

 (3)范围查询

 联合索引中,出现范围查询(>,<),范围查询右侧的列索引失效。

explain select * from tb_user where profession = '软件工程' and age > 30 and
status = '0';

当范围查询使用> 或 < 时,走联合索引了,但是索引的长度为49,就说明范围查询右边的status字段是没有走索引的。

explain select * from tb_user where profession = '软件工程' and age >= 30 and
status = '0';

当范围查询使用>= 或 <= 时,走联合索引了,但是索引的长度为54,就说明所有的字段都是走索引的。

所以,在业务允许的情况下,尽可能的使用类似于 >= 或 <= 。

 (4)索引失效情况

①索引列运算

不要在索引列上进行运算操作, 索引将失效。

当根据phone字段进行等值匹配查询时, 索引生效。

explain select * from tb_user where phone = '17799990015';

当根据phone字段进行函数运算操作之后,索引失效。

explain select * from tb_user where substring(phone,10,2) = '15';


②字符串不加引号

字符串类型字段使用时,不加引号,索引将失效。

explain select * from tb_user where profession = '软件工程' and age = 31 and status
= '0';
explain select * from tb_user where profession = '软件工程' and age = 31 and status
= 0;

explain select * from tb_user where phone = '17799990015';
explain select * from tb_user where phone = 17799990015;

经过上面两组示例,会明显的发现,如果字符串不加单引号,对于查询结果,没什么影响,但是数据库存在隐式类型转换,索引将失效。


③模糊查询

如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。

explain select * from tb_user where profession like '软件%';
explain select * from tb_user where profession like '%工程';
explain select * from tb_user where profession like '%工%';

由于查询语句中,都是根据profession字段查询,符合最左前缀法则,联合索引是可以生效的,
主要看一下,模糊查询时,%加在关键字之前,和加在关键字之后的影响。

经过上述的测试发现,在like模糊查询中,在关键字后面加%,索引可以生效。而如果在关键字前面加了%,索引将会失效。


④or连接条件

用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。

explain select * from tb_user where id = 10 or age = 23;
explain select * from tb_user where phone = '17799990017' or age = 23;

 由于age没有索引,所以即使id、phone有索引,索引也会失效。所以需要针对于age也要建

 立索引。

然后,我们可以对age字段建立索引。
create index idx_user_age on tb_user(age);

建立了索引之后,我们再次执行上述的SQL语句,看看前后执行计划的变化。

最终,我们发现,当or连接的条件,左右两侧字段都有索引时,索引才会生效。


⑤数据分布影响

如果MySQL评估使用索引比全表更慢,则不使用索引。

select * from tb_user where phone >= '17799990005';
select * from tb_user where phone >= '17799990015';

经过测试我们发现,相同的SQL语句,只是传入的字段值不同,最终的执行计划也完全不一样, 就是因为MySQL在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,则放弃索引,走全表扫描。 因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不如走全表扫描来的快,此时索引就会失效。

接下来,我们再来看看 is null 与 is not null 操作是否走索引。

explain select * from tb_user where profession is null;
explain select * from tb_user where profession is not null;

接下来,我们做一个操作将profession字段值全部更新为null。然后,再次执行上述的两条SQL,查看SQL语句的执行计划。

最终我们看到,一模一样的SQL语句,先后执行了两次,结果查询计划是不一样的,为什么会出现这种现象,这是和数据库的数据分布有关系。查询时MySQL会评估,走索引快,还是全表扫描快,如果全表扫描更快,则放弃索引走全表扫描。 因此,is null 、is not null是否走索引,得具体情况具体分析,并不是固定的

 (5)SQL提示

SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的,在查询的时候有多个索引,自己来指定使用哪个索引。

use index:建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进行评估)
例如:
    explain select * from tb_user use index(idx_user_pro) where profession = 
    '软件工程';

ignore index:忽略指定的索引。
例如:
    explain select * from tb_user ignore index(idx_user_pro) where profession = 
    '软件工程';

force index:强制使用索引。
例如:
   explain select * from tb_user force index(idx_user_pro) where profession = 
   '软件工程';

(6)覆盖索引,回表查询 

尽量使用覆盖索引,减少select  *。

什么是覆盖索引?

覆盖索引是指查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到 。

接下来,我们来看一组SQL的执行计划,看看执行计划的差别,然后再来具体做一个解析。
explain select id, profession from tb_user where profession = '软件工程' and age =
31 and status = '0' ;
explain select id,profession,age, status from tb_user where profession = '软件工程'
and age = 31 and status = '0' ;
explain select id,profession,age, status, name from tb_user where profession = '软
件工程' and age = 31 and status = '0' ;
explain select * from tb_user where profession = '软件工程' and age = 31 and status
= '0';

上述这几条SQL的执行结果为: 

从上述的执行计划我们可以看到,这四条SQL语句的执行计划前面所有的指标都是一样的,看不出来差   异。但是此时,我们主要关注的是后面的Extra,前面两天SQL的结果为 Using where; Using Index ; 而后面两条SQL的结果为: Using index condition 。

因为,在tb_user表中有一个联合索引 idx_user_pro_age_sta,该索引关联了三个字段 profession、age、status,而这个索引也是一个二级索引,所以叶子节点下面挂的是这一行的主键id。 所以当我们查询返回的数据在 id、profession、age、status 之中,则直接走二级索引直接返回数据了。 如果超出这个范围,就需要拿到主键id,再去扫描聚集索引,再获取额外的数据了,这个过程就是回表。 而我们如果一直使用select * 查询返回所有字段值,很容易就会造成回表查询(除非是根据主键查询,此时只会扫描聚集索引)。

为了大家更清楚的理解,什么是覆盖索引,什么是回表查询,我们一起再来看下面的这组SQL的执行过程。

思考题: 一张表, 有四个字段(id, username, password, status), 由于数据量大,
需要对以下SQL语句进行优化, 该如何进行才是最优方案:

select id,username,password from tb_user where username = 'itcast'; 

答案: 针对于 username, password建立联合索引, 
      sql为: create index idx_user_name_pass on tb_user(username,password); 
      这样可以避免上述的SQL语句,在查询的过程中,出现回表查询

 (7)前缀索引

当字段类型为字符串(varchar,text,longtext等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO, 影响查询效率。此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。

语法: create index idx_xxxx on table_name(column(n)) ;

示例:
  为tb_user表的email字段,建立长度为5的前缀索引。
  create index idx_email_5 on tb_user(email(5));

前缀长度:可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值, 索引选择性越高则查询效率越高, 唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。

select count(distinct email) / count(*) from tb_user ;
select count(distinct substring(email,1,5)) / count(*) from tb_user ;

前缀索引的查询流程:

(8)单列索引与联合索引

单列索引:即一个索引只包含单个列。

联合索引:即一个索引包含了多个列。

我们先来看看 tb_user 表中目前的索引情况:

在查询出来的索引中,既有单列索引,又有联合索引。

接下来,我们来执行一条SQL语句,看看其执行计划:

通过上述执行计划我们可以看出来,在and连接的两个字段 phone、name上都是有单列索引的,但是最终mysql只会选择一个索引,也就是说,只能走一个字段的索引,此时是会回表查询的。

紧接着,我们再来创建一个phone和name字段的联合索引来查询一下执行计划。

create unique index idx_user_phone_name on tb_user(phone,name);

此时,查询时,就走了联合索引,而在联合索引中包含 phone、name的信息,在叶子节点下挂的是对应的主键id,所以查询是无需回表查询的。

在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引, 而非单列索引。

如果查询使用的是联合索引,具体的结构示意图如   下:

(9)设计原则 

1️⃣针对于数据量较大,且查询比较频繁的表建立索引。

2️⃣针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建

      立索引。

3️⃣尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越

     高。

4️⃣如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。 5️⃣尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储

     空间, 避免回表,提高查询效率。

6️⃣要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会

     影响增删改的效率。  

7️⃣如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列

    是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询。

九. SQL优化

1. 插入数据

 (1)insert:

如果我们需要一次性往数据库表中插入多条记录,可以从以下三个方面进行优化。
insert into tb_test values(1,'tom');
insert into tb_test values(2,'cat');
insert into tb_test values(3,'jerry');
.....

优化方案一:
批量插入数据
Insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');

优化方案二:
手动控制事务
start transaction;
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
insert into tb_test values(4,'Tom'),(5,'Cat'),(6,'Jerry');
insert into tb_test values(7,'Tom'),(8,'Cat'),(9,'Jerry');
commit;

优化方案三:
主键顺序插入,性能要高于乱序插入。
主键乱序插入 : 8 1 9 21 88 2 4 15 89 5 7 3
主键顺序插入 : 1 2 3 4 5 7 8 9 15 21 88 89

(2)大批量插入数据

如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:

可以执行如下指令,将数据脚本文件中的数据加载到表结   构中:

客户端连接服务端时,加上参数 -–local-infile
   mysql –-local-infile -u root -p
设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
   set global local_infile = 1;
执行load指令将准备好的数据,加载到表结构中
   load data local infile '/root/sql1.log' into table tb_user fields terminated 
   by ',' lines terminated by '\n' ;

在load时,主键顺序插入性能高于乱序插入

2. 主键优化

(1)数据组织方式

在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表 (index organized table IOT)。

行数据,都是存储在聚集索引的叶子节点上的。而我们之前也讲解过InnoDB的逻辑结构图:

在InnoDB引擎中,数据行是记录在逻辑结构 page 页中的,而每一个页的大小是固定的,默认16K。 那也就意味着, 一个页中所存储的行也是有限的,如果插入的数据行row在该页存储不小,将会存储到下一个页中,页与页之间会通过指针连接 


(2)页分裂

页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。

A. 主键顺序插入效果

    ①. 从磁盘中申请页, 主键顺序插入

    ②. 第一个页没有满,继续往第一页插入

   ③. 当第一个也写满之后,再写入第二个页,页与页之间会通过指针连接

   ④. 当第二页写满了,再往第三页写入

B. 主键乱序插入效果

   ①. 加入1#,2#页都已经写满了,存放了如图所示的数据

  ②. 此时再插入id为50的记录,我们来看看会发生什么现象,会再次开启一个页,写入新的

       页中吗?

       不会。因为,索引结构的叶子节点是有顺序的。按照顺序,应该存储在47之后。

       但是47所在的1#页,已经写满了,存储不了50对应的数据了。 那么此时会开辟一个新的

       页3#。

       但是并不会直接将50存入3#页,而是会将1#页后一半的数据,移动到3#页,然后在3#

       页,插入50。

       移动数据,并插入id为50的数据之后,那么此时,这三个页之间的数据顺序是有问题

       的。 1#的下一个页,应该是3#, 3#的下一个页是2#。 所以,此时,需要重新设置链表

       指针。

       上述的这种现象,称之为 "页分裂",是比较耗费性能的操作。


(3)页合并

目前表中已有数据的索引结构(叶子节点)如下

当我们对已有数据进行删除时,具体的效果如下:

当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间 变得允许被其他记录声明使用。

当我们继续删除2#的数据记录

当页中删除的记录达到 MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用。

删除数据,并将页合并之后,再次插入新的数据21,则直接插入3#页

这个里面所发生的合并页的这个现象,就称之为 "页合并"。

知识小贴士: MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。


(4)主键优化

1️⃣满足业务需求的情况下,尽量降低主键的长度。

2️⃣插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。

3️⃣尽量不要使用UUID做主键或者是其他自然主键,如身份证号。

4️⃣业务操作时,避免对主键的修改。

 3. order by优化

MySQL的排序,有两种方式:

1️⃣Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区

     sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort排

     序。

2️⃣Using index : 通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不

     需要额外排序,操作效率高

对于以上的两种排序方式,Using index的性能高,而Using filesort的性能低,我们在优化排序 操作时,尽量要优化为 Using index。

接下来,我们来做一个测试:

执行排序SQL
explain select id,age,phone from tb_user order by age ;
explain select id,age,phone from tb_user order by age, phone ;

由于 age, phone 都没有索引,所以此时再排序时,出现Using filesort, 排序性能较低。

创建索引
  create index idx_user_age_phone_aa on tb_user(age,phone);
创建索引后,根据age, phone进行升序排序
  explain select id,age,phone from tb_user order by age;
  explain select id,age,phone from tb_user order by age , phone;

建立索引之后,再次进行排序查询,就由原来的Using filesort, 变为了 Using index,性能 就是比较高的了。

创建索引后,根据age, phone进行降序排序
   explain select id,age,phone from tb_user order by age desc , phone desc ;

也出现 Using index, 但是此时Extra中出现了 Backward index scan,这个代表反向扫描索 引,因为在MySQL中我们创建的索引,默认索引的叶子节点是从小到大排序的,而此时我们查询排序时,是从大到小,所以,在扫描时,就是反向扫描,就会出现 Backward index scan。 在 MySQL8版本中,支持降序索引,我们也可以创建降序索引。

根据phone,age进行升序排序,phone在前,age在后。
  explain select id,age,phone from tb_user order by phone , age;

排序时,也需要满足最左前缀法则,否则也会出现 filesort。因为在创建索引的时候, age是第一个字段,phone是第二个字段,所以排序时,也就该按照这个顺序来,否则就会出现 Using filesort。

根据age, phone进行降序一个升序,一个降序
  explain select id,age,phone from tb_user order by age asc , phone desc ;

因为创建索引时,如果未指定顺序,默认都是按照升序排序的,而查询时,一个升序,一个降序,此时就会出现Using filesort。

为了解决上述的问题,我们可以创建一个索引,这个联合索引中 age 升序排序,phone 倒序排序。

 创建联合索引(age 升序排序,phone 倒序排序)
   create index idx_user_age_phone_ad on tb_user(age asc ,phone desc);

然后再次执行如下SQL
  explain select id,age,phone from tb_user order by age asc , phone desc ;

升序/降序联合索引结构图示:

由上述的测试,我们得出order by优化原则:

1️⃣. 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。

2️⃣. 尽量使用覆盖索引。

3️⃣. 多字段排序, 一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)

4️⃣. 如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小

       sort_buffer_size(默认256k)。

4. group by优化 

分组操作,我们主要来看看索引对于分组操作的影响。

在没有索引的情况下,执行如下SQL,查询执行计划:
  explain select profession , count(*) from tb_user group by profession ;

然后,我们在针对于 profession , age, status 创建一个联合索引。
  create index idx_user_pro_age_sta on tb_user(profession , age , status);

紧接着,再执行前面相同的SQL查看执行计划。
  explain select profession , count(*) from tb_user group by profession ;

再执行如下的分组查询SQL,查看执行计划:

我们发现,如果仅仅根据age分组,就会出现 Using temporary ;而如果是根据 profession,age两个字段同时分组,则不会出现 Using temporary。原因是因为对于分组操作, 在联合索引中,也是符合最左前缀法则的。

所以,在分组操作中,我们需要通过以下两点进行优化,以提升性能:

 1️⃣在分组操作时,可以通过索引来提高效率。

 2️⃣分组操作时,索引的使用也是满足最左前缀法则的。

5. limit优化 

在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。

我们一起来看看执行limit分页查询耗时对比:

通过测试我们会看到,越往后,分页查询效率越低,这就是分页查询的问题所在。

因为,当在进行分页查询时,如果执行 limit 2000000,10 ,此时需要MySQL排序前2000010 记录,仅仅返回 2000000 - 2000010 的记录,其他记录丢弃,查询排序的代价非常大 。

优化思路: 一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查
         询形式进行优化。
explain select * from tb_sku t , (select id from tb_sku order by id limit 
2000000,10) a where t.id = a.id;

6. count优化

如果数据量很大,在执行count操作时,是非常耗时的。

MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个 数,效率很高; 但是如果是带条件的count,MyISAM也慢。

InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出 来,然后累积计数。

如果说要大幅度提升InnoDB表的count效率,主要的优化思路:自己计数(可以借助于redis这样的数据库进行,但是如果是带条件的count又比较麻烦了)。

count用法:

count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是 NULL,累计值就加 1,否则不加,最后返回累计值。

用法:count(*)、count(主键)、count(字段)、count(数字)

按照效率排序的话,count(字段) < count(主键 id) < count(1) ≈ count(*),所以尽量使用 count(*)。

 7. update优化

我们主要需要注意一下update语句执行时的注意事项。
update course set name = 'javaEE' where id = 1 ;
当我们在执行删除的SQL语句时,会锁定id为1这一行的数据,然后事务提交之后,行锁释放。
但是当我们在执行如下SQL时。
update course set name = 'SpringBoot' where name = 'PHP' ;
当我们开启多个事务,在执行上述的SQL时,我们发现因为name没有索引,行锁升级为了表锁, 
导致该update语句的性能大大降低。

InnoDB的行锁是针对索引加的锁,不是针对记录加的锁 ,并且该索引不能失效,否则会从行锁
升级为表锁 。

十. 视图/存储过程/存储函数/触发器

 1. 视图

(1)介绍

 视图(View)是一种虚拟存在的表。视图中的数据并不在数据库中实际存在,行和列数据来自定义视图的查询中使用的表,并且是在使用视图时动态生成的。 通俗的讲,视图只保存了查询的SQL逻辑,不保存查询结果。所以我们在创建视图的时候,主要的工作 就落在创建这条SQL查询语句上。


(2)语法

创建:
  CREATE [OR REPLACE] VIEW 视图名称[(列名列表)] AS SELECT语句 [ WITH [CASCADED |
  LOCAL ] CHECK OPTION ]
  例如:
   create or replace view stu_v_1 as select id,name from student where id <= 10;
查询:
  查看创建视图语句:SHOW CREATE VIEW 视图名称;
  查看视图数据:SELECT * FROM 视图名称 ...... ;
  例如: show create view stu_v_1;
        select * from stu_v_1;
        select * from stu_v_1 where id < 3;
修改:
  方式一:CREATE [OR REPLACE] VIEW 视图名称[(列名列表)] AS SELECT语句 [ WITH
         [ CASCADED | LOCAL ] CHECK OPTION ]
         例如:create or replace view stu_v_1 as select id,name,no from student
               where id <= 10;

  方式二:ALTER VIEW 视图名称[(列名列表)] AS SELECT语句 [ WITH [ CASCADED |
         LOCAL ] CHECK OPTION ]
         例如:alter view stu_v_1 as select id,name from student where id <= 10;
删除:
  DROP VIEW [IF EXISTS] 视图名称 [,视图名称] ...
  例如:drop view if exists stu_v_1;


(3)检查选项

上述我们演示了,视图应该如何创建、查询、修改、删除,那么我们能不能通过视图来插入、更新数据呢? 接下来,做一个测试。

create or replace view stu_v_1 as select id,name from student where id <= 10 ;
select * from stu_v_1;
insert into stu_v_1 values(6,'Tom');
insert into stu_v_1 values(17,'Tom22');

执行上述的SQL,我们会发现,id为6和17的数据都是可以成功插入的。 但是我们执行查询,查询出
来的数据,却没有id为17的记录。
因为我们在创建视图的时候,指定的条件为 id<=10, id为17的数据,是不符合条件的,所以没有查
询出来,但是这条数据确实是已经成功的插入到了基表中。
如果我们定义视图时,如果指定了条件,然后我们在插入、修改、删除数据时,是否可以做到必须满
足条件才能操作,否则不能够操作呢? 答案是可以的,这就需要借助于视图的检查选项了。

检查选项:

当使用WITH CHECK OPTION子句创建视图时,MySQL会通过视图检查正在更改的每个行,例如插入,
更新,删除,以使其符合视图的定义。 MySQL允许基于另一个视图创建视图,它还会检查依赖视
图中的规则以保持一致性。为了确定检查的范围,mysql提供了两个选项: CASCADED 和 LOCAL
,默认值为 CASCADED 。

CASCADED:

级联。
比如,v2视图是基于v1视图的,如果在v2视图创建的时候指定了检查选项为 cascaded,但是v1视图
创建时未指定检查选项。 则在执行检查时,不仅会检查v2,还会级联检查v2的关联视图v1。

例如:
create  or replace view stu_v_1 as  select id,name from student where id<=15 ;
insert  into  stu_v_1 values (5,'tom');   成功
insert  into  stu_v_1 values (16,'tom');  成功
create  or replace view stu_v_2 as  select id,name from stu_v_1 where id>10
with check option;
insert  into  stu_v_2 values (13,'tom');  成功
insert  into  stu_v_2 values (17,'tom');  失败
create  or replace view stu_v_3 as  select id,name from stu_v_2 where id<20 ;
insert  into  stu_v_3 values (14,'tom');  成功
insert  into  stu_v_3 values (19,'tom');  失败

LOCAL:

本地。
比如,v2视图是基于v1视图的,如果在v2视图创建的时候指定了检查选项为 local ,但是v1视图创
建时未指定检查选项。 则在执行检查时,只会检查v2,不会检查v2的关联视图v1

例如:
create  or replace view stu_v_1 as  select id,name from student where id<=15 ;
insert  into  stu_v_1 values (5,'tom');  成功
insert  into  stu_v_1 values (16,'tom');  成功
create  or replace view stu_v_2 as  select id,name from stu_v_1 where id>10
with local check option;  
insert  into  stu_v_2 values (13,'tom');  成功
insert  into  stu_v_2 values (17,'tom');  成功
create  or replace view stu_v_3 as  select id,name from stu_v_2 where id<20 ;
insert  into  stu_v_3 values (30,'tom');  成功


(4)视图的更新及作用

视图的更新:

要使视图可更新,视图中的行与基础表中的行之间必须存在一对一的关系。如果视图包含以下任何一项,则该视图不可更新:

   1️⃣聚合函数或窗口函数(SUM()、 MIN()、 MAX()、 COUNT()等)

   2️⃣DISTINCT

   3️⃣GROUP BY

   4️⃣HAVING E. UNION 或者 UNION ALL

例如:

create view stu_v_count as select count(*) from student;
上述的视图中,就只有一个单行单列的数据,如果我们对这个视图进行更新或插入的,将会报错。
insert into stu_v_count values(10);

视图作用:

   1️⃣简单

        视图不仅可以简化用户对数据的理解,也可以简化他们的操作。那些被经常使用的查询

        可以被定义为视 图,从而使得用户不必为以后的操作每次指定全部的条件。

   2️⃣安全

        数据库可以授权,但不能授权到数据库特定行和特定的列上。通过视图用户只能查询和

        修改他们所能见到的数据

   3️⃣数据独立

        视图可帮助用户屏蔽真实表结构变化带来的影响。


 (5)案例

为了保证数据库表的安全性,开发人员在操作tb_user表时,只能看到的用户的基本字段,屏蔽手机号
和邮箱两个字段。
create view tb_user_view as select id,name,profession,age,gender,status,createtime
from tb_user;
select * from tb_user_view;

查询每个学生所选修的课程(三张表联查),这个功能在很多的业务中都有使用到,为了简化操作,定
义一个视图
create view tb_stu_course_view as select s.name student_name , s.no student_no ,
c.name course_name from student s, student_course sc , course c where s.id =
sc.studentid and sc.courseid = c.id;
select * from tb_stu_course_view;

2. 存储过程 

(1)介绍

存储过程是事先经过编译并存储在数据库中的一段 SQL 语句的集合,调用存储过程可以简化应用开发 人员的很多工作,减少数据在数据库和应用服务器之间的传输,对于提高数据处理的效率是有好处的。

存储过程思想上很简单,就是数据库 SQL 语言层面的代码封装与重用。

特点:

   1️⃣封装,复用 -----------------------> 可以把某一业务SQL封装在存储过程中,需要用到的时

        候直接调用即可。

   2️⃣可以接收参数,也可以返回数据 --------> 再存储过程中,可以传递参数,也可以接收返

        回值。

   3️⃣减少网络交互,效率提升 -------------> 如果涉及到多条SQL,每执行一次都是一次网络

        传输。 而如果封装在存储过程中,我们只需要网络交互一次可能就可以了。


(2)基本语法

创建:
  CREATE PROCEDURE 存储过程名称 ([ 参数列表 ])
  BEGIN
    -- SQL语句
  END ;
  例如:create procedure p1()
        begin
          select count(*) from student;
        end;


调用:
  CALL 名称 ([ 参数 ]);
  例如:call p1();

查看:
  --查询指定数据库的存储过程及状态信息
  SELECT * FROM INFORMATION_SCHEMA.ROUTINES WHERE ROUTINE_SCHEMA = 'xxx';
  例如;
     select * from information_schema.ROUTINES where ROUTINE_SCHEMA = 'itcast';
  SHOW CREATE PROCEDURE 存储过程名称 ; -- 查询某个存储过程的定义
  例如:
     show create procedure p1;
删除:
  DROP PROCEDURE [ IF EXISTS ] 存储过程名称 ;

注意:
  在命令行中,执行创建存储过程的SQL时,需要通过关键字 delimiter 指定SQL语句的结束符。
  因为命令行中默认结束符是分号
  例如:
      delimiter $$  将结束符设置为两个$$

(3)变量

在MySQL中变量分为三种类型: 系统变量、用户定义变量、局部变量。

①系统变量 
系统变量是MySQL服务器提供,不是用户定义的,属于服务器层面。分为全局变量(GLOBAL)、
会话变量(SESSION)。
全局变量(GLOBAL): 全局变量针对于所有的会话。
会话变量(SESSION): 会话变量针对于单个会话,在另外一个会话窗口就不生效了。

查看系统变量:
  SHOW [ SESSION | GLOBAL ] VARIABLES ;查看所有系统变量
  例如:
     show session variables ;
  SHOW [ SESSION | GLOBAL ] VARIABLES LIKE '......';可以通过LIKE模糊匹配方式查找变量
  例如:
     show session variables like 'auto%';
     show global variables like 'auto%';
  SELECT @@[SESSION | GLOBAL] 系统变量名;查看指定变量的值
  例如:
     select @@global.autocommit;
     select @@session.autocommit;

设置系统变量:
  SET [ SESSION | GLOBAL ] 系统变量名 = 值 ;
  例如:
    set session autocommit = 1;
  SET @@[SESSION | GLOBAL]系统变量名 = 值 ;

注意:
  如果没有指定SESSION/GLOBAL,默认是SESSION,会话变量。
  mysql服务重新启动之后,所设置的全局参数会失效,要想不失效,可以在 /etc/my.cnf 中配置。

②用户定义变量
用户定义变量是用户根据需要自己定义的变量,用户变量不用提前声明,在用的时候直接用"@变量名"
使用就可以。其作用域为当前连接。

赋值:
  方式一:
    SET @var_name = expr [, @var_name = expr] ... ;
    SET @var_name := expr [, @var_name := expr] ... ;
    赋值时,可以使用 = ,也可以使用 := 。
    例如:
      set @myage = 10;
      set @mygender := '男',@myhobby := 'java';
  方式二:
    SELECT @var_name := expr [, @var_name := expr] ... ;
    SELECT 字段名 INTO @var_name FROM 表名;
    例如:
      select @mycolor := 'red';
      select count(*) into @mycount from tb_user;

使用:
  SELECT @var_name ;
  例如:
    select @mycolor , @mycount;

注意: 用户定义的变量无需对其进行声明或初始化,只不过获取到的值为NULL。
③局部变量
局部变量是根据需要定义的在局部生效的变量,访问之前,需要DECLARE声明。可用作存储过程内的
局部变量和输入参数,局部变量的范围是在其内声明的BEGIN ... END块。

声明:
  DECLARE 变量名 变量类型 [DEFAULT ... ] ;
  变量类型就是数据库字段类型:INT、BIGINT、CHAR、VARCHAR、DATE、TIME等。

赋值:
  SET 变量名 = 值 ;
  SET 变量名 := 值 ;
  SELECT 字段名 INTO 变量名 FROM 表名 ... ;

例如:
  create procedure p2()
  begin
    declare stu_count int default 0;   声明局部变量,default表示默认值
    select count(*) into stu_count from student;  赋值
    select stu_count;  查询
  end;
  call p2();  调用

(4)if判断 

介绍:
  if用于做条件判断,具体的语法结构为:
      IF 条件1 THEN
          .....
      ELSEIF 条件2 THEN -- 可选
          .....
      ELSE -- 可选
          .....
      END IF;
  在if条件判断的结构中,ELSEIF 结构可以有多个,也可以没有。 ELSE结构可以有,也可以没有。

案例:
  根据定义的分数score变量,判定当前分数对应的分数等级。
  score >= 85分,等级为优秀。
  score >= 60分 且 score < 85分,等级为及格。
  score < 60分,等级为不及格。
代码:
  create procedure p3()
  begin
    declare score int default 58;
    declare result varchar(10);
    if score >= 85 then
        set result := '优秀';
    elseif score >= 60 then
        set result := '及格';
    else
        set result := '不及格';
    end if;
    select result;
  end;
  call p3();

 (5)参数

介绍:参数的类型,主要分为以下三种:IN、OUT、INOUT。 具体的含义如下:

用法:

CREATE PROCEDURE 存储过程名称 ([ IN/OUT/INOUT 参数名 参数类型 ])
BEGIN
  -- SQL语句
END ;

案例1:根据传入参数score,判定当前分数对应的分数等级,并返回。
       score >= 85分,等级为优秀。
       score >= 60分 且 score < 85分,等级为及格。
       score < 60分,等级为不及格。
create procedure p4(in score int, out result varchar(10))
begin
   if score >= 85 then
      set result := '优秀';
   elseif score >= 60 then
      set result := '及格';
   else
      set result := '不及格';
   end if;
end;
call p4(18, @result); 定义用户变量 @result来接收返回的数据, 用户变量可以不用声明
select @result;

案例2:将传入的200分制的分数,进行换算,换算成百分制,然后返回。
create procedure p5(inout score double)
begin
   set score := score * 0.5;
end;
set @score = 198;
call p5(@score);
select @score;

(6)case

case结构及作用,和我们在基础篇中所讲解的流程控制函数很类似。有两种语法格式:

语法1:
   含义: 当case_value的值为 when_value1时,执行statement_list1,当值为 when_value2时,
          执行statement_list2, 否则就执行 statement_list
   CASE case_value
      WHEN when_value1 THEN statement_list1
      [WHEN when_value2 THEN statement_list2] ...
      [ELSE statement_list]
   END CASE;

语法2:
   含义: 当条件search_condition1成立时,执行statement_list1,当条件search_condition2成
          立时,执行statement_list2, 否则就执行 statement_list
   注意:如果判定条件有多个,多个条件之间,可以使用 and 或 or 进行连接。
   CASE
      WHEN search_condition1 THEN statement_list1
      [WHEN search_condition2 THEN statement_list2] ...
      [ELSE statement_list]
   END CASE;

案例: 根据传入的月份,判定月份所属的季节(要求采用case结构)。
      1-3月份,为第一季度
      4-6月份,为第二季度
      7-9月份,为第三季度
      10-12月份,为第四季度
create procedure p6(in month int)
begin
   declare result varchar(10);
   case
      when month >= 1 and month <= 3 then
         set result := '第一季度';
      when month >= 4 and month <= 6 then
         set result := '第二季度';
      when month >= 7 and month <= 9 then
         set result := '第三季度';
      when month >= 10 and month <= 12 then
         set result := '第四季度';
      else
         set result := '非法参数';
   end case ;
   select concat('您输入的月份为: ',month, ', 所属的季度为: ',result);
end;
call p6(16);

(7)while循环

while 循环是有条件的循环控制语句。满足条件后,再执行循环体中的SQL语句。
具体语法为:
    先判定条件,如果条件为true,则执行逻辑,否则,不执行逻辑
    WHILE 条件 DO
       SQL逻辑...
    END WHILE;

案例:计算从1累加到n的值,n为传入的参数值。
create procedure p7(in n int)
begin
   declare total int default 0;
   while n>0 do
      set total := total + n;
      set n := n - 1;
   end while;
   select total;
end;
call p7(100);

(8)repeat循环

repeat是有条件的循环控制语句, 当满足until声明的条件的时候,则退出循环 
具体语法为:
  先执行一次逻辑,然后判定UNTIL条件是否满足,如果满足,则退出。如果不满足,则继续下一次循环
  REPEAT
    SQL逻辑...
    UNTIL 条件
  END REPEAT;

案例:计算从1累加到n的值,n为传入的参数值。(使用repeat实现)
create procedure p8(in n int)
begin
   declare total int default 0;
   repeat
      set total := total + n;
      set n := n - 1;
   until n <= 0
   end repeat;
   select total;
end;
call p8(10);
call p8(100);

(9)loop循环

LOOP 实现简单的循环,如果不在SQL逻辑中增加退出循环的条件,可以用其来实现简单的死循环。
LOOP可以配合一下两个语句使用:
  LEAVE :配合循环使用,退出循环。
  ITERATE:必须用在循环中,作用是跳过当前循环剩下的语句,直接进入下一次循环。

[begin_label:] LOOP
  SQL逻辑...
END LOOP [end_label];
LEAVE label; -- 退出指定标记的循环体
ITERATE label; -- 直接进入下一次循环
上述语法中出现的 begin_label,end_label,label 指的都是我们所自定义的标记。

案例一: 计算从1累加到n的值,n为传入的参数值。
create procedure p9(in n int)
begin
   declare total int default 0;
   sum:loop
      if n<=0 then
         leave sum;
      end if;
      set total := total + n;
      set n := n - 1;
   end loop sum;
   select total;
end;
call p9(100);

案例二: 计算从1到n之间的偶数累加的值,n为传入的参数值。
create procedure p10(in n int)
begin
   declare total int default 0;
   sum:loop
      if n<=0 then
         leave sum;
      end if;
      if n%2 = 1 then
         set n := n - 1;
         iterate sum;
      end if;
      set total := total + n;
      set n := n - 1;
   end loop sum;
   select total;
end;
call p10(100);

(10)条件处理程序handler

条件处理程序(Handler)可以用来定义在流程控制结构执行过程中遇到问题时相应的处理步骤。

具体语法为:
DECLARE handler_action HANDLER FOR condition_value [, condition_value] ... statement ;

handler_action 的取值:
   CONTINUE: 继续执行当前程序
   EXIT: 终止执行当前程序
condition_value 的取值:
   SQLSTATE sqlstate_value: 状态码,如 02000
   SQLWARNING: 所有以01开头的SQLSTATE代码的简写
   NOT FOUND: 所有以02开头的SQLSTATE代码的简写
   SQLEXCEPTION: 所有没有被SQLWARNING 或 NOT FOUND捕获的SQLSTATE代码的简写

(11)游标cursor 

游标(CURSOR)是用来存储查询结果集的数据类型 , 在存储过程和函数中可以使用游标对结果集进
行循环的处理。游标的使用包括游标的声明、OPEN、FETCH 和 CLOSE
其语法分别如下:

声明游标:
  DECLARE 游标名称 CURSOR FOR 查询语句 ;
打开游标: 
  OPEN 游标名称 ;
获取游标记录:
  FETCH 游标名称 INTO 变量 [, 变量 ] ;
关闭游标:
  CLOSE 游标名称 ;

案例:
根据传入的参数uage,来查询用户表tb_user中,所有的用户年龄小于等于uage的用户姓名(name)
和专业(profession),并将用户的姓名和专业插入到所创建的一张新表(id,name,profession)中
逻辑: 声明游标, 存储查询结果集
      准备: 创建表结构
      开启游标
      获取游标中的记录
      插入数据到新表中
      关闭游标
create procedure p12(in uage int)
begin
   declare uname varchar(100);
   declare upro varchar(100);
   declare u_cursor cursor for select name,profession from tb_user where age <=uage;
   -- 声明条件处理程序 : 当SQL语句执行抛出的状态码为02开头时,将关闭游标u_cursor,并退出
   declare exit handler for not found close u_cursor;
   drop table if exists tb_user_pro;
   create table if not exists tb_user_pro(
      id int primary key auto_increment,
      name varchar(100),
      profession varchar(100)
   );
   open u_cursor;
   while true do
      fetch u_cursor into uname,upro;
      insert into tb_user_pro values (null, uname, upro);
   end while;
   close u_cursor;
end;
call p12(30);

3. 存储函数 

存储函数是有返回值的存储过程,存储函数的参数只能是IN类型的。

具体语法如下:
CREATE FUNCTION 存储函数名称 ([ 参数列表 ])
RETURNS type [characteristic ...]
BEGIN
   -- SQL语句
   RETURN ...;
END ;

characteristic说明:
   DETERMINISTIC:相同的输入参数总是产生相同的结果
   NO SQL :不包含 SQL 语句。
   READS SQL DATA:包含读取数据的语句,但不包含写入数据的语句。

案例:计算从1累加到n的值,n为传入的参数值。
create function fun1(n int)
returns int deterministic
begin
   declare total int default 0;
   while n>0 do
      set total := total + n;
      set n := n - 1;
   end while;
   return total;
end;
select fun1(50);

在mysql8.0版本中binlog默认是开启的,一旦开启了,mysql就要求在定义存储过程时,需要指定 characteristic特性,否则就会报如下错误:

 4. 触发器

介绍:

触发器是与表有关的数据库对象,指在insert/update/delete之前(BEFORE)或之后(AFTER),触发并执行触发器中定义的SQL语句集合。触发器的这种特性可以协助应用在数据库端确保数据的完整性 , 日志记录 , 数据校验等操作 。

使用别名OLD和NEW来引用触发器中发生变化的记录内容,这与其他的数据库是相似的。现在触发器还只支持行级触发,不支持语句级触发。

语法:

创建:
  CREATE TRIGGER trigger_name
  BEFORE/AFTER INSERT/UPDATE/DELETE
  ON tbl_name FOR EACH ROW -- 行级触发器
  BEGIN
     trigger_stmt ;
  END;

查看:
  SHOW TRIGGERS ;

删除:
  DROP TRIGGER [schema_name.]trigger_name ;--如果没有指定schema_name,默认为当前数据库

案例:

通过触发器记录 tb_user 表的数据变更日志,将变更日志插入到日志表user_logs中, 包含增加,
修改 , 删除 ;

表结构准备:
准备工作 : 日志表 user_logs
create table user_logs(
   id int(11) not null auto_increment,
   operation varchar(20) not null comment '操作类型, insert/update/delete',
   operate_time datetime not null comment '操作时间',
   operate_id int(11) not null comment '操作的ID',
   operate_params varchar(500) comment '操作参数',
   primary key(`id`)
)engine=innodb default charset=utf8;

插入数据触发器:
create trigger tb_user_insert_trigger
   after insert on tb_user for each row
begin
   insert into user_logs(id, operation, operate_time, operate_id, operate_params)
   VALUES(null, 'insert', now(), new.id, concat('插入的数据内容为:
   id=',new.id,',name=',new.name, ', phone=', NEW.phone, ', email=', NEW.email,',
   profession=', NEW.profession));
end;

测试:
插入数据到tb_user
insert into tb_user(id, name, phone, email, profession, age, gender, status,
createtime) VALUES (26,'三皇子','18809091212','erhuangzi@163.com','软件工
程',23,'1','1',now());

修改数据触发器:
create trigger tb_user_update_trigger
   after update on tb_user for each row
begin
   insert into user_logs(id, operation, operate_time, operate_id, operate_params)
   VALUES(null, 'update', now(), new.id,concat('更新之前的数据: 
   id=',old.id,',name=',old.name, ', phone=',old.phone, ', email=', old.email, ', 
   profession=', old.profession,' | 更新之后的数据: id=',new.id,',name=',new.name, ', 
   phone=',NEW.phone, ', email=', NEW.email, ', profession=', NEW.profession));
end;

测试:
更新
update tb_user set profession = '会计' where id = 23;
update tb_user set profession = '会计' where id <= 5;

删除数据触发器:
create trigger tb_user_delete_trigger
   after delete on tb_user for each row
begin
   insert into user_logs(id, operation, operate_time, operate_id, operate_params)
   VALUES(null, 'delete', now(), old.id,concat('删除之前的数据:id=',old.id,',name=',
   old.name, ', phone=',old.phone, ', email=', old.email, ', profession=', 
   old.profession));
end;

测试:
删除数据
delete from tb_user where id = 26;

十一. 锁 

1. 介绍

锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、 RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有 效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个 角度来说,锁对数据库而言显得尤其重要,也更加复杂。

MySQL中的锁,按照锁的粒度分,分为以下三类:

全局锁:锁定数据库中的所有表。

表级锁:每次操作锁住整张表。

行级锁:每次操作锁住对应的行数据。 

2. 全局锁 

介绍:全局锁就是对整个数据库实例加锁,加锁后整个实例就处于只读状态,后续的DML的写语句,DDL语句,已经更新操作的事务提交语句都将被阻塞。 其典型的使用场景是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整性。

不加全局锁,可能存在的问题:

假设在数据库中存在这样三张表: tb_stock 库存表,tb_order 订单表,tb_orderlog 订单日志表。

①在进行数据备份时,先备份了tb_stock库存表。

②然后接下来,在业务系统中,执行了下单操作,扣减库存,生成订单(更新tb_stock表,插入 tb_order表)。

③然后再执行备份tb_order表的逻辑。

④业务中执行插入订单日志操作。

⑤最后,又备份了tb_orderlog表。

此时备份出来的数据,是存在问题的。因为备份出来的数据,tb_stock表与tb_order表的数据不一致(有最新操作的订单信息,但是库存数没减)。

加了全局锁后的情况:

对数据库进行进行逻辑备份之前,先对整个数据库加上全局锁,一旦加了全局锁之后,其他的DDL、 DML全部都处于阻塞状态,但是可以执行DQL语句,也就是处于只读状态,而数据备份就是查询操作。 那么数据在进行逻辑备份的过程中,数据库中的数据就是不会发生变化的,这样就保证了数据的一致性和完整性。

语法:

加全局锁 
  flush tables with read lock ;
数据备份
  mysqldump -uroot –p1234 itcast > itcast.sql
释放锁
  unlock tables ;

在InnoDB引擎中,我们可以在备份时加上参数--single-transaction参数来完成不加锁的一致性
数据备份。
mysqldump --single-transaction -uroot –p123456 itcast > itcast.sql

特点: 数据库中加全局锁,是一个比较重的操作,存在以下问题:

①如果在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆。

②如果在从库上备份,那么在备份期间从库不能执行主库同步过来的二进制日志 (binlog),会

    导致主从延迟。

3. 表锁

(1)介绍

表级锁,每次操作锁住整张表。锁定粒度大,发生锁冲突的概率最高,并发度最低。应用在MyISAM、 InnoDB、BDB等存储引擎中。

对于表级锁,主要分为以下三类:

表锁

元数据锁(meta data lock,MDL)

意向锁


(2)表锁:

对于表锁,分为两类:

表共享读锁(read lock)

表独占写锁(write lock)

语法:
加锁:lock tables 表名... read/write。
释放锁:unlock tables / 客户端断开连接 。

读锁:

    左侧为客户端一,对指定表加了读锁,不会影响右侧客户端二的读,但是会阻塞右侧客户

    端的写。

写锁:

    左侧为客户端一,对指定表加了写锁,会阻塞右侧客户端的读和写。

结论: 读锁不会阻塞其他客户端的读,但是会阻塞写。写锁既会阻塞其他客户端的读,又会阻塞 其他客户端的写。


(3)元数据锁

meta data lock , 元数据锁,简写MDL。

MDL加锁过程是系统自动控制,无需显式使用,在访问一张表的时候会自动加上。MDL锁主要作用是维护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。为了避免DML与 DDL冲突,保证读写的正确性。

这里的元数据,大家可以简单理解为就是一张表的表结构。 也就是说,某一张表涉及到未提交的事务时,是不能够修改这张表的表结构的。

在MySQL5.5中引入了MDL,当对一张表进行增删改查的时候,加MDL读锁(共享);当对表结构进行变更操作的时候,加MDL写锁(排他)。

常见的SQL操作时,所添加的元数据锁:

当执行SELECT、INSERT、UPDATE、DELETE等语句时,添加的是元数据共享锁(SHARED_READ / SHARED_WRITE),之间是兼容的。

当执行SELECT语句时,添加的是元数据共享锁(SHARED_READ),会阻塞元数据排他锁 (EXCLUSIVE),之间是互斥的。

我们可以通过下面的SQL,来查看数据库中的元数据锁的情况
select object_type,object_schema,object_name,lock_type,lock_duration from
performance_schema.metadata_locks ;

(4)意向锁

介绍:

为了避免DML在执行时,加的行锁与表锁的冲突,在InnoDB中引入了意向锁,使得表锁不用检查每行数据是否加锁,使用意向锁来减少表锁的检查。

假如没有意向锁,客户端一对表加了行锁后,客户端二如何给表加表锁呢,来通过示意图简单分析一 下:

首先客户端一,开启一个事务,然后执行DML操作,在执行DML语句时,会对涉及到的行加行锁。

当客户端二,想对这张表加表锁时,会检查当前表是否有对应的行锁,如果没有,则添加表锁,此时就会从第一行数据,检查到最后一行数据,效率较低。

有了意向锁之后 :

客户端一,在执行DML操作时,会对涉及的行加行锁,同时也会对该表加上意向锁。

而其他客户端,在对这张表加表锁的时候,会根据该表上所加的意向锁来判定是否可以成功加表锁,而不用逐行判断行锁情况了。

分类:
意向共享锁(IS): 由语句select ... lock in share mode添加 。与表锁共享锁 (read)兼容,与
表锁排他锁(write)互斥。
意向排他锁(IX): 由insert、update、delete、select...for update添加 。与表锁共享锁
(read)及排他锁(write)都互斥,意向锁之间不会互斥。

一旦事务提交了,意向共享锁、意向排他锁,都会自动释放。

可以通过以下SQL,查看意向锁及行锁的加锁情况:
select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from
performance_schema.data_locks;

4. 行级锁 

介绍:

行级锁,每次操作锁住对应的行数据。锁定粒度最小,发生锁冲突的概率最低,并发度最高。应用在 InnoDB存储引擎中。

InnoDB的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的锁。对于行级锁,主要分为以下三类:

行锁(Record Lock):锁定单个行记录的锁,防止其他事务对此行进行update和delete。在 RC、RR隔离级别下都支持。

InnoDB实现了以下两种类型的行锁:

共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排它锁。  

排他锁(X):允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他锁。

两种行锁的兼容情况如下:

常见的SQL语句,在执行时,所加的行锁如下:

默认情况下,InnoDB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 next-key 锁进行搜 索和索引扫描,以防止幻读。

针对唯一索引进行检索时,对已存在的记录进行等值匹配时,将会自动优化为行锁。

InnoDB的行锁是针对于索引加的锁,不通过索引条件检索数据,那么InnoDB将对表中的所有记录加锁,此时就会升级为表锁。

可以通过以下SQL,查看意向锁及行锁的加锁情况:
select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from
performance_schema.data_locks;

间隙锁(Gap Lock):锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事务在这个间隙进行insert,产生幻读。在RR隔离级别下都支持。

临键锁(Next-Key Lock):行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap。 在RR隔离级别下支持。

默认情况下,InnoDB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 next-key 锁进行搜索和索引扫描,以防止幻读。

    索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁 。

    索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key

    lock 退化为间隙锁。

    索引上的范围查询(唯一索引)--会访问到不满足条件的第一个值为止。

注意:间隙锁唯一目的是防止其他事务插入 间隙。间隙锁可以共存,一个事务采用的间隙锁不会 阻止另一个事务在同一间隙上采用间隙锁。

十二.  InnoDB引擎

1. 逻辑存储结构

InnoDB的逻辑存储结构如下图所示:

表空间:表空间是InnoDB存储引擎逻辑结构的最高层, 如果用户启用了参数innodb_file_per_table(在 8.0版本中默认开启) ,则每张表都会有一个表空间(xxx.ibd),一个mysql实例可以对应多个表空间,用于存储记录、索引等数据。

段:段,分为数据段(Leaf node segment)、索引段(Non-leaf node segment)、回滚段 (Rollback segment),InnoDB是索引组织表,数据段就是B+树的叶子节点, 索引段即为B+树的  非叶子节点。段用来管理多个Extent(区)。

区:区,表空间的单元结构,每个区的大小为1M。 默认情况下, InnoDB存储引擎页大小为16K, 即一个区中一共有64个连续的页。

页:页,是InnoDB 存储引擎磁盘管理的最小单元,每个页的大小默认为 16KB。为了保证页的连续性, InnoDB 存储引擎每次从磁盘申请 4-5 个区。

行:行,InnoDB 存储引擎数据是按行进行存放的。

在行中,默认有两个隐藏字段:

    ①Trx_id:每次对某条记录进行改动时,都会把对应的事务id赋值给trx_id隐藏列。 

    ②Roll_pointer:每次对某条引记录进行改动时,都会把旧的版本写入到undo日志中,然

        后这个隐藏列就相当于一个指针,可以通过它来找到该记录修改前的信息。

2. 架构

概述:MySQL5.5 版本开始,默认使用InnoDB存储引擎,它擅长事务处理,具有崩溃恢复特性,在日常开发中使用非常广泛。下面是InnoDB架构图,左侧为内存结构,右侧为磁盘结构


(1)内存结构

在左侧的内存结构中,主要分为这么四大块儿: Buffer Pool、Change Buffer、Adaptive Hash Index、Log Buffer。

Buffer Pool:InnoDB存储引擎基于磁盘文件存储,访问物理硬盘和在内存中进行访问,速度相差很大,为了尽可能弥补这两者之间的I/O效率的差值,就需要把经常使用的数据加载到缓冲池中,避免每次访问都进行磁盘I/O。

在InnoDB的缓冲池中不仅缓存了索引页和数据页,还包含了undo页、插入缓存、自适应哈希索引以及 InnoDB的锁信息等等。

缓冲池 Buffer Pool,是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增删改查操作时,先操作缓冲池中的数据(若缓冲池没有数据,则从磁盘加载并缓存),然后再以一定频率刷新到磁盘,从而减少磁盘IO,加快处理速度。

缓冲池以Page页为单位,底层采用链表数据结构管理Page。根据状态,将Page分为三种类型: free page:空闲page,未被使用。

        clean page:被使用page,数据没有被修改过。

        dirty page:脏页,被使用page,数据被修改过,也中数据与磁盘的数据产生了不一致。

在专用服务器上,通常将多达80%的物理内存分配给缓冲池 。参数设置: show variables like 'innodb_buffer_pool_size';

Change Buffer:Change Buffer,更改缓冲区(针对于非唯一二级索引页),在执行DML语句时,如果这些数据Page 没有在Buffer Pool中,不会直接操作磁盘,而会将数据变更存在更改缓冲区 Change Buffer 中,在未来数据被读取时,再将数据合并恢复到Buffer Pool中,再将合并后的数据刷新到磁盘中。

Change Buffer的意义是什么呢?

先来看一幅图,这个是二级索引的结构图

与聚集索引不同,二级索引通常是非唯一的,并且以相对随机的顺序插入二级索引。同样,删除和更新可能会影响索引树中不相邻的二级索引页,如果每一次都操作磁盘,会造成大量的磁盘IO。有了 ChangeBuffer之后,我们可以在缓冲池中进行合并处理,减少磁盘IO。

Adaptive Hash Index:自适应hash索引,用于优化对Buffer Pool数据的查询。MySQL的innoDB引擎中虽然没有直接支持 hash索引,但是给我们提供了一个功能就是这个自适应hash索引。因为前面我们讲到过,hash索引在 进行等值匹配时,一般性能是要高于B+树的,因为hash索引一般只需要一次IO即可,而B+树,可能需要几次匹配,所以hash索引的效率要高,但是hash索引又不适合做范围查询、模糊匹配等。

InnoDB存储引擎会监控对表上各索引页的查询,如果观察到在特定的条件下hash索引可以提升速度, 则建立hash索引,称之为自适应hash索引。

自适应哈希索引,无需人工干预,是系统根据情况自动完成。

参数: adaptive_hash_index

Log Buffer:Log Buffer:日志缓冲区,用来保存要写入到磁盘中的log日志数据(redo log 、undo log), 默认大小为 16MB,日志缓冲区的日志会定期刷新到磁盘中。如果需要更新、插入或删除许多行的事 务,增加日志缓冲区的大小可以节省磁盘 I/O。

参数: innodb_log_buffer_size:缓冲区大小

         innodb_flush_log_at_trx_commit:日志刷新到磁盘时机,取值主要包含以下三个:

            1: 日志在每次事务提交时写入并刷新到磁盘,默认值。

            0: 每秒将日志写入并刷新到磁盘一次。

            2: 日志在每次事务提交后写入,并每秒刷新到磁盘一次。


(2)磁盘结构

接下来,再来看看InnoDB体系结构的右边部分,也就是磁盘结构

System Tablespace:系统表空间是更改缓冲区的存储区域。如果表是在系统表空间而不是每个表文件或通用表空间中创建的,它也可能包含表和索引数据。(在MySQL5.x版本中还包含InnoDB数据字典、undolog等)

参数:innodb_data_file_path

系统表空间,默认的文件名叫ibdata1。

File-Per-Table Tablespaces:如果开启了innodb_file_per_table开关 ,则每个表的文件表空间包含单个InnoDB表的数据和索引 ,并存储在文件系统上的单个数据文件中。

开关参数:innodb_file_per_table ,该参数默认开启。

那也就是说,我们每创建一个表,都会产生一个表空间文件,如图:

General Tablespaces:通用表空间,需要通过 CREATE TABLESPACE 语法创建通用表空间,在创建表时,可以指定该表空间。

创建表空间
  CREATE TABLESPACE ts_name ADD DATAFILE 'file_name' ENGINE = engine_name;
创建表时指定表空间
  CREATE TABLE xxx ... TABLESPACE ts_name;

Undo Tablespaces:撤销表空间,MySQL实例在初始化时会自动创建两个默认的undo表空间(初始大小16M),用于存储 undo log日志。

Temporary Tablespaces:InnoDB 使用会话临时表空间和全局临时表空间。存储用户创建的临时表等数据。

Doublewrite Buffer Files:双写缓冲区,innoDB引擎将数据页从Buffer Pool刷新到磁盘前,先将数据页写入双写缓冲区文件中,便于系统异常时恢复数据。

Redo Log:重做日志,是用来实现事务的持久性。该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log),前者是在内存中,后者在磁盘中。当事务提交之后会把所 有修改信息都会存到该日志中, 用于在刷新脏页到磁盘时,发生错误时, 进行数据恢复使用。

以循环方式写入重做日志文件,涉及两个文件:


(3)后台线程

在InnoDB的后台线程中,分为4类,分别是:Master Thread 、IO Thread、Purge Thread、 Page Cleaner Thread。

Master Thread:核心后台线程,负责调度其他线程,还负责将缓冲池中的数据异步刷新到磁盘中, 保持数据的一致性, 还包括脏页的刷新、合并插入缓存、undo页的回收 。

IO Thread:在InnoDB存储引擎中大量使用了AIO来处理IO请求, 这样可以极大地提高数据库的性能,而IO Thread主要负责这些IO请求的回调。

我们可以通过以下的这条指令,查看到InnoDB的状态信息,其中就包含IO Thread信息
show engine innodb status \G;

Purge Thread:主要用于回收事务已经提交了的undo log,在事务提交之后,undo log可能不用了,就用它来回收

Page Cleaner Thread:协助 Master Thread 刷新脏页到磁盘的线程,它可以减轻 Master Thread 的工作压力,减少阻塞。

3. 事务原理 

(1)事务基础

事务:事务  是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系 统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。

特性: 原子性(Atomicity):事务是不可分割的最小操作单元,要么全部成功,要么全部失败。              一致性(Consistency):事务完成时,必须使所有的数据都保持一致状态。

            隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影

                                               响的独立环境下运行。 

            持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。

那实际上,我们研究事务的原理,就是研究MySQL的InnoDB引擎是如何保证事务的这四大特性的。

而对于这四大特性,实际上分为两个部分。 其中的原子性、一致性、持久化,实际上是由InnoDB中的两份日志来保证的,一份是redo log日志,一份是undo log日志。 而持久性是通过数据库的锁, 加上MVCC来保证的。

我们在讲解事务原理的时候,主要就是来研究一下redolog,undolog以及MVCC。


(2)redo log

重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久性。

该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log file),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都存到该日志文件中, 用于在刷新脏页到磁盘,发生错误时, 进行数据恢复使用。

如果没有redolog,可能会存在什么问题的? 我们一起来分析一下

我们知道,在InnoDB引擎中的内存结构中,主要的内存区域就是缓冲池,在缓冲池中缓存了很多的数据页。 当我们在一个事务中,执行多个增删改的操作时,InnoDB引擎会先操作缓冲池中的数据,如果缓冲区没有对应的数据,会通过后台线程将磁盘中的数据加载出来,存放在缓冲区中,然后将缓冲池中的数据修改,修改后的数据页我们称为脏页。 而脏页则会在一定的时机,通过后台线程刷新到磁盘 中,从而保证缓冲区与磁盘的数据一致。 而缓冲区的脏页数据并不是实时刷新的,而是一段时间之后 将缓冲区的数据刷新到磁盘中,假如刷新到磁盘的过程出错了,而提示给用户事务提交成功,而数据却没有持久化下来,这就出现问题了,没有保证事务的持久性。

那么,如何解决上述的问题呢? 在InnoDB中提供了一份日志 redo log,接下来我们再来分析一 下,通过redolog如何解决这个问题。

有了redolog之后,当对缓冲区的数据进行增删改之后,会首先将操作的数据页的变化,记录在redo log buffer中。在事务提交时,会将redo log buffer中的数据刷新到redo log磁盘文件中。 过一段时间之后,如果刷新缓冲区的脏页到磁盘时,发生错误,此时就可以借助于redo log进行数据 恢复,这样就保证了事务的持久性。 而如果脏页成功刷新到磁盘 或 或者涉及到的数据已经落盘,此 时redolog就没有作用了,就可以删除了,所以存在的两个redolog文件是循环写的

那为什么每一次提交事务,要刷新redo log 到磁盘中呢,而不是直接将buffer pool中的脏页刷新到磁盘呢 ?

因为在业务操作中,我们操作数据一般都是随机读写磁盘的,而不是顺序读写磁盘。 而redo log在 往磁盘文件中写入数据,由于是日志文件,所以都是顺序写的。顺序写的效率,要远大于随机写。 这 种先写日志的方式,称之为 WAL(Write-Ahead Logging)。


(3)undo log

回滚日志,用于记录数据被修改前的信息 , 作用包含两个 : 提供回滚(保证事务的原子性) 和 MVCC(多版本并发控制) 。

undo log和redo log记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undo log中会记录一条对应的insert记录,反之亦然,当update一条记录时,它记录一条对应相反的 update记录。当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。

Undo log销毁:undo log在事务执行时产生,事务提交时,并不会立即删除undo log,因为这些 日志可能还用于MVCC。

Undo log存储:undo log采用段的方式进行管理和记录,存放在前面介绍的 rollback segment 回滚段中,内部包含1024个undo log segment。


(4)MVCC

基本概念:

当前读:读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加 锁。对于我们日常的操作,如:select ... lock in share mode(共享锁),select ... for update、update、insert、delete(排他锁)都是一种当前读。

快照读:简单的select(不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据, 不加锁,是非阻塞读。

Read Committed:每次select,都生成一个快照读。

Repeatable Read:开启事务后第一个select语句才是快照读的地方。

Serializable:快照读会退化为当前读。

MVCC:全称 Multi-Version Concurrency Control,多版本并发控制。指维护一个数据的多个版本, 使得读写操作没有冲突,快照读为MySQL实现MVCC提供了一个非阻塞读功能。MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段、undo log日志、readView。

隐藏字段:

介绍:

当我们创建了上面的这张表,我们在查看表结构的时候,就可以显式的看到这三个字段。 实际上除了 这三个字段以外,InnoDB还会自动的给我们添加三个隐藏字段及其含义分别是:

而上述的前两个字段是肯定会添加的, 是否添加最后一个字段DB_ROW_ID,得看当前表有没有主键, 如果有主键,则不会添加该隐藏字段。  

测试:查看表有没有主键
进入服务器中的 /var/lib/mysql/数据库/ , 查看xxx的表结构信息, 通过如下指令:
ibd2sdi stu.ibd
查看到的表结构信息中,有一栏 columns,在其中我们会看到处理我们建表时指定的字段以外,还有
额外的两个字段 分别是:DB_TRX_ID 、 DB_ROLL_PTR ,如果该表有主键,就没有DB_ROW_ID
隐藏字段,如果没有主键就有

undolog:

介绍:回滚日志,在insert、update、delete的时候产生的便于数据回滚的日志。

          当insert的时候,产生的undo log日志只在回滚时需要,在事务提交后,可被立即删除。            而update、delete的时候,产生的undo log日志不仅在回滚时需要,在快照读时也需

          要,不会立即被删除。

版本链:有一张表原始数据为:

DB_TRX_ID : 代表最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID,是 自增的。

DB_ROLL_PTR : 由于这条数据是才插入的,没有被更新过,所以该字段值为null。

然后,有四个并发事务同时在访问这张表。

第一步:

当事务2执行第一条修改语句时,会记录undo log日志,记录数据变更之前的样子; 然后更新记录, 并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

第二步:

当事务3执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记 录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本

第三步:

当事务4执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记 录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

最终我们发现,不同事务或相同事务对同一条记录进行修改,会导致该记录的undolog生成一条 记录版本链表,链表的头部是最新的旧记录,链表尾部是最早的旧记录。

readview:

ReadView(读视图)是快照读 SQL执行时MVCC提取数据的依据,记录并维护系统当前活跃的事务 (未提交的)id。

ReadView中包含了四个核心字段:

而在readview中就规定了版本链数据的访问规则:

trx_id 代表当前undolog版本链对应事务ID。

不同的隔离级别,生成ReadView的时机不同:

READ COMMITTED :在事务中每一次执行快照读时生成ReadView。 REPEATABLE READ:仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。

原理分析:

RC隔离级别:RC隔离级别下,在事务中每一次执行快照读时生成ReadView。

我们就来分析事务5中,两次快照读读取数据,是如何获取数据的?

在事务5中,查询了两次id为30的记录,由于隔离级别为Read Committed,所以每一次进行快照读 都会生成一个ReadView,那么两次生成的ReadView如下。

那么这两次快照读在获取数据时,就需要根据所生成的ReadView以及ReadView的版本链访问规则, 到undolog版本链中匹配数据,最终决定此次快照读返回的数据。

先来看第一次快照读具体的读取过程:

在进行匹配时,会从undo log的版本链,从上到下进行挨个匹配:

再来看第二次快照读具体的读取过程:

在进行匹配时,会从undo log的版本链,从上到下进行挨个匹配:

RR隔离级别:

RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。 而RR 是可 重复读,在一个事务中,执行两次相同的select语句,查询到的结果是一样的。 那MySQL是如何做到可重复读的呢? 我们简单分析一下就知道了

我们看到,在RR隔离级别下,只是在事务中第一次快照读时生成ReadView,后续都是复用该 ReadView,那么既然ReadView都一样, ReadView的版本链匹配规则也一样, 那么最终快照读返回的结果也是一样的。

所以呢,MVCC的实现原理就是通过 InnoDB表的隐藏字段、UndoLog 版本链、ReadView来实现的。 而MVCC + 锁,则实现了事务的隔离性。 而一致性则是由redolog 与 undolog保证。

 十三. MySql管理

系统数据库介绍:

Mysql数据库安装完成后,自带了一下四个数据库,具体作用如下

常用工具:

mysql
该mysql不是指mysql服务,而是指mysql的客户端工具。
语法 : mysql [options] [database]
选项 :-u, --user=name #指定用户名
       -p, --password[=name] #指定密码
       -h, --host=name #指定服务器IP或域名
       -P, --port=port #指定连接端口
       -e, --execute=name #执行SQL语句并退出
-e选项可以在Mysql客户端执行SQL语句,而不用连接到MySQL数据库再执行,对于一些批处理脚本,
这种方式尤其方便。
示例: mysql -uroot –p123456 db01 -e "select * from stu";

mysqladmin
mysqladmin 是一个执行管理操作的客户端程序。可以用它来检查服务器的配置和当前状态、创建并
删除数据库等。
通过帮助文档查看选项: mysqladmin --help
语法: mysqladmin [options] command ...
选项: -u, --user=name #指定用户名
      -p, --password[=name] #指定密码
      -h, --host=name #指定服务器IP或域名
      -P, --port=port #指定连接端口
示例:mysqladmin -uroot –p1234 drop 'test01';
     mysqladmin -uroot –p1234 version;

mysqlbinlog
由于服务器生成的二进制日志文件以二进制格式保存,所以如果想要检查这些文本的文本格式,就会使
用到mysqlbinlog 日志管理工具。
语法 : mysqlbinlog [options] log-files1 log-files2 ...
选项 : -d, --database=name 指定数据库名称,只列出指定的数据库相关操作。
       -o, --offset=# 忽略掉日志中的前n行命令。
       -r,--result-file=name 将输出的文本格式日志输出到指定文件。
       -s, --short-form 显示简单格式, 省略掉一些信息。
       --start-datatime=date1 --stop-datetime=date2 指定日期间隔内的所有日志。
       --start-position=pos1 --stop-position=pos2 指定位置间隔内的所有日志。

mysqlshow
mysqlshow 客户端对象查找工具,用来很快地查找存在哪些数据库、数据库中的表、表中的列或者索
引。
语法 : mysqlshow [options] [db_name [table_name [col_name]]]
选项 : --count 显示数据库及表的统计信息(数据库,表 均可以不指定)
       -i 显示指定数据库或者指定表的状态信息
示例:  #查询test库中每个表中的字段书,及行数
           mysqlshow -uroot -p2143 test --count
       #查询test库中book表的详细情况
           mysqlshow -uroot -p2143 test book --count

mysqldump
mysqldump 客户端工具用来备份数据库或在不同数据库之间进行数据迁移。备份内容包含创建表,及
插入表的SQL语句
语法 : mysqldump [options] db_name [tables]
        mysqldump [options] --database/-B db1 [db2 db3...]
        mysqldump [options] --all-databases/-A
连接选项 : -u, --user=name 指定用户名
           -p, --password[=name] 指定密码
           -h, --host=name 指定服务器ip或域名
           -P, --port=# 指定连接端口
输出选项: --add-drop-database 在每个数据库创建语句前加上 drop database 语句
          --add-drop-table 在每个表创建语句前加上 drop table 语句 , 默认开启 ; 不
                           开启 (--skip-add-drop-table)
          -n, --no-create-db 不包含数据库的创建语句
          -t, --no-create-info 不包含数据表的创建语句
          -d --no-data 不包含数据
          -T, --tab=name 自动生成两个文件:一个.sql文件,创建表结构的语句;一个.txt文件,
                         数据文件

mysqlimport/source
mysqlimport 是客户端数据导入工具,用来导入mysqldump 加 -T 参数后导出的文本文件。
语法 :mysqlimport [options] db_name textfile1 [textfile2...]
示例 :mysqlimport -uroot -p2143 test /tmp/city.txt
如果需要导入sql文件,可以使用mysql中的source 指令 :
语法 :source /root/xxxxx.sql

十四. 日志

1. 错误日志

错误日志是 MySQL 中最重要的日志之一,它记录了当 mysqld 启动和停止时,以及服务器在运行过 程中发生任何严重错误时的相关信息。当数据库出现任何故障导致无法正常使用时,建议首先查看此日志。

该日志是默认开启的,默认存放目录 /var/log/,默认的日志文件名为 mysqld.log 。查看日志 位置: 

show variables like '%log_error%';

2. 二进制日志 

二进制日志(BINLOG)记录了所有的 DDL(数据定义语言)语句和 DML(数据操纵语言)语句,但不包括数据查询(SELECT、SHOW) 语句。

作用:①. 灾难时的数据恢复;②. MySQL的主从复制。在MySQL8版本中,默认二进制日志是开启着的,涉及到的参数如下:

show variables like '%log_bin%';

参数说明:

log_bin_basename:当前数据库服务器的binlog日志的基础名称(前缀),具体的binlog文件名

                                  需要再该basename的基础上加上编号(编号从000001开始)。 log_bin_index:binlog的索引文件 ,里面记录了当前服务器关联的binlog文件有哪些。

格式:

MySQL服务器中提供了多种格式来记录二进制日志,具体格式及特点如下:

show variables like '%binlog_format%';

如果我们需要配置二进制日志的格式,只需要在 /etc/my.cnf 中配置 binlog_format 参数即 可。 

查看:

由于日志是以二进制方式存储的,不能直接读取,需要通过二进制日志查询工具 mysqlbinlog  来查看,具体语法:

mysqlbinlog [ 参数选项 ] logfilename
参数选项:
   -d 指定数据库名称,只列出指定的数据库相关操作。
   -o 忽略掉日志中的前n行命令。
   -v 将行事件(数据变更)重构为SQL语句
   -vv 将行事件(数据变更)重构为SQL语句,并输出注释信息

删除:

对于比较繁忙的业务系统,每天生成的binlog数据巨大,如果长时间不清除,将会占用大量磁盘空间。可以通过以下几种方式清理日志:

也可以在mysql的配置文件中配置二进制日志的过期时间,设置了之后,二进制日志过期会自动删除。
show variables like '%binlog_expire_logs_seconds%';

3. 查询日志

查询日志中记录了客户端的所有操作语句,而二进制日志不包含查询数据的SQL语句。默认情况下, 查询日志是未开启的。

如果需要开启查询日志,可以修改MySQL的配置文件 /etc/my.cnf 文件,添加如下内容:

#该选项用来开启查询日志 , 可选值 : 0 或者 1 ; 0 代表关闭, 1 代表开启
general_log=1
#设置日志的文件名 , 如果没有指定, 默认的文件名为 host_name.log
general_log_file=mysql_query.log

开启了查询日志之后,在MySQL的数据存放目录,也就是 /var/lib/mysql/ 目录下就会出现 mysql_query.log 文件。之后所有的客户端的增删改查操作都会记录在该日志文件之中,长时间运行后,该日志文件将会非常大。

 4. 慢查询日志

慢查询日志记录了所有执行时间超过参数 long_query_time 设置值并且扫描记录数不小于 min_examined_row_limit 的所有的SQL语句的日志,默认未开启。long_query_time 默认为 10 秒,最小为 0, 精度可以到微秒。

如果需要开启慢查询日志,需要在MySQL的配置文件 /etc/my.cnf 中配置如下参数:

#慢查询日志
slow_query_log=1
#执行时间参数
long_query_time=2

默认情况下,不会记录管理语句,也不会记录不使用索引进行查找的查询。可以使用 log_slow_admin_statements和 更改此行为 log_queries_not_using_indexes,如下所述。

#记录执行较慢的管理语句
log_slow_admin_statements =1
#记录执行较慢的未使用索引的语句
log_queries_not_using_indexes = 1

上述所有的参数配置完成之后,都需要重新启动MySQL服务器才可以生效。

十五. 主从复制  

概述:主从复制是指将主数据库的 DDL 和 DML 操作通过二进制日志传到从库服务器中,然后在从库上对这些日志重新执行(也叫重做),从而使得从库和主库的数据保持同步。 MySQL支持一台主库同时向多台从库进行复制, 从库同时也可以作为其他从服务器的主库,实现链状复制。

MySQL 复制的优点主要包含以下三个方面:

         主库出现问题,可以快速切换到从库提供服务。

         实现读写分离,降低主库的访问压力。

         可以在从库中执行备份,以避免备份期间影响主库服务。

原理:MySQL主从复制的核心就是二进制日志,具体的过程如下

从上图来看,复制分成三步:

       1. Master 主库在事务提交时,会把数据变更记录在二进制日志文件 Binlog 中。

       2. 从库读取主库的二进制日志文件 Binlog ,写入到从库的中继日志 Relay Log 。

       3. slave重做中继日志中的事件,将改变反映它自己的数据。

搭建:

准备:

准备好两台服务器之后,在上述的两台服务器中分别安装好MySQL,并完成基础的初始化准备(安装、 密码配置等操作)工作。 其中: 192.168.200.200 作为主服务器master   

                                                                   192.168.200.201 作为从服务器slave

主库配置:

1. 修改配置文件 /etc/my.cnf
     #mysql 服务ID,保证整个集群环境中唯一,取值范围:1 – 2^32-1,默认为1
       server-id=1
     #是否只读,1 代表只读, 0 代表读写
        read-only=0
     #忽略的数据, 指不需要同步的数据库
     #binlog-ignore-db=mysql
     #指定同步的数据库
     #binlog-do-db=db0

2. 重启MySQL服务器
     systemctl restart mysqld

3. 登录mysql,创建远程连接的账号,并授予主从复制权限
     #创建itcast用户,并设置密码,该用户可在任意主机连接该MySQL服务
       CREATE USER 'itcast'@'%' IDENTIFIED WITH mysql_native_password BY 
      'Root@123456';
     #为 'itcast'@'%' 用户分配主从复制权限
       GRANT REPLICATION SLAVE ON *.* TO 'itcast'@'%';

4. 通过指令,查看二进制日志坐标
     show master status ;
     字段含义说明: file : 从哪个日志文件开始推送日志文件
                   position : 从哪个位置开始推送日志
                   binlog_ignore_db : 指定不需要同步的数据库

从库配置:

1. 修改配置文件 /etc/my.cnf
     #mysql 服务ID,保证整个集群环境中唯一,取值范围:1 – 2^32-1,和主库不一样即可
        server-id=2
     #是否只读,1 代表只读, 0 代表读写
        read-only=1

2. 重新启动MySQL服务
     systemctl restart mysqld

3. 登录mysql,设置主库配置
    CHANGE REPLICATION SOURCE TO SOURCE_HOST='192.168.200.200', SOURCE_USER='itcast',
    SOURCE_PASSWORD='Root@123456', SOURCE_LOG_FILE='binlog.000004',
    SOURCE_LOG_POS=663;
    上述是8.0.23中的语法。如果mysql是 8.0.23 之前的版本,执行如下SQL:
    CHANGE MASTER TO MASTER_HOST='192.168.200.200', MASTER_USER='itcast',
    MASTER_PASSWORD='Root@123456', MASTER_LOG_FILE='binlog.000004',
    MASTER_LOG_POS=663;
    参数名               含义             8.0.23之前
    SOURCE_HOST      主库IP地址          MASTER_HOST
    SOURCE_USER      连接主库的用户名     MASTER_USER
    SOURCE_PASSWORD  连接主库的密码       MASTER_PASSWORD
    SOURCE_LOG_FILE  binlog日志文件名     MASTER_LOG_FILE
    SOURCE_LOG_POS   binlog日志文件位置   MASTER_LOG_POS

4. 开启同步操作
     start replica ; #8.0.22之后
     start slave ; #8.0.22之前

5. 查看主从同步状态
     show replica status ; #8.0.22之后
     show slave status ; #8.0.22之前

测试:

在主库 192.168.200.200 上创建数据库、表,并插入数据
create database db01;
use db01;
create table tb_user(
   id int(11) primary key not null auto_increment,
   name varchar(50) not null,
   sex varchar(1)
)engine=innodb default charset=utf8mb4;
insert into tb_user(id,name,sex) values(null,'Tom', '1'),(null,'Trigger','0'),
(null,'Dawn','1');

在从库 192.168.200.201 中查询数据,验证主从是否同步

十六. 分库分表

 1. 介绍

(1)问题分析

随着互联网及移动互联网的发展,应用系统的数据量也是成指数式增长,若采用单数据库进行数据存储,存在以下性能瓶颈:

1️⃣IO瓶颈:热点数据太多,数据库缓存不足,产生大量磁盘IO,效率较低。 请求数据太多,带宽不够,网络IO瓶颈。

2️⃣CPU瓶颈:排序、分组、连接查询、聚合统计等SQL会耗费大量的CPU资源,请求数太多,CPU出现瓶颈。

为了解决上述问题,我们需要对数据库进行分库分表处理。

分库分表的中心思想都是将数据分散存储,使得单一数据库/表的数据量变小来缓解单一数据库的性能问题,从而达到提升数据库性能的目的。


(2)拆分策略

分库分表的形式,主要是两种:垂直拆分和水平拆分。而拆分的粒度,一般又分为分库和分表,所以组 成的拆分策略最终如下:

垂直拆分:

1. 垂直分库

垂直分库:以表为依据,根据业务将不同表拆分到不同库中。

特点: 每个库的表结构都不一样。

            每个库的数据也不一样。

            所有库的并集是全量数据。

2. 垂直分表

垂直分表:以字段为依据,根据字段属性将不同字段拆分到不同表中。

特点: 每个表的结构都不一样。

            每个表的数据也不一样,一般通过一列(主键/外键)关联。

            所有表的并集是全量数据。

水平拆分:

1. 水平分库

水平分库:以字段为依据,按照一定策略,将一个库的数据拆分到多个库中。

特点: 每个库的表结构都一样。

            每个库的数据都不一样。

            所有库的并集是全量数据。

2. 水平分表

水平分表:以字段为依据,按照一定策略,将一个表的数据拆分到多个表中。

特点: 每个表的表结构都一样。

            每个表的数据都不一样。

            所有表的并集是全量数据。  

在业务系统中,为了缓解磁盘IO及CPU的性能瓶颈,到底是垂直拆分,还是水平拆分;具体是分 库,还是分表,都需要根据具体的业务需求具体分析。


(3)实现技术

shardingJDBC:基于AOP原理,在应用程序中对本地执行的SQL进行拦截,解析、改写、路由处理。需要自行编码配置实现,只支持java语言,性能较高。

MyCat:数据库分库分表中间件,不用调整代码即可实现分库分表,支持多种语言,性能不及前者

十七. 读写分离 

1. 介绍

读写分离,简单地说是把对数据库的读和写操作分开,以对应不同的数据库服务器。主数据库提供写操 作,从数据库提供读操作,这样能有效地减轻单台数据库的压力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前端小马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值