LeetCode 204. 计数质数
描述
给定整数 n ,返回 所有小于非负整数 n 的质数的数量 。
示例 1:
输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
示例 2:
输入:n = 0
输出:0
示例 3:
输入:n = 1
输出:0
提示:
0 <= n <= 5 * 106
题解
class Solution {
// 埃拉托斯特尼筛法(Sieve of Eratosthenes)来高效地计算小于n的素数个数
// 创建一个布尔类型的数组 isPrim,长度为n,并使用 Arrays.fill 方法将其所有元素初始化为true。数组isPrim 的索引表示数字,值为 true 表示该索引对应的数字是素数。
// 从2开始遍历到 sqrt(n)。对于每个遍历到的数字 i,如果它是素数(即 isPrim[i] 为 true),则将大于等于 i^2 且小于 n 的 i 的倍数所对应的 isPrim 数组元素置为 false。这一步的目的是排除所有非素数。
// 计算素数的个数。遍历数组 isPrim,并统计值为 true 的元素个数,即为小于n的素数个数。
public int countPrimes(int n) {
boolean[] isPrim = new boolean[n];
Arrays.fill(isPrim, true);
// 从 2 开始枚举到 sqrt(n)。
for (int i = 2; i * i < n; i++) {
// 如果当前是素数
if (isPrim[i]) {
// 就把从 i*i 开始,i 的所有倍数都设置为 false。
for (int j = i * i; j < n; j+=i) {
isPrim[j] = false;
}
}
}
// 计数
int cnt = 0;
for (int i = 2; i < n; i++) {
if (isPrim[i]) {
cnt++;
}
}
return cnt;
}
}