笔记
分享我学习的笔记
爱学习的攻城狮
分享学习日常
展开
-
python函数库之scipy
scipy主要的功能模块包括:原创 2024-08-12 21:57:14 · 327 阅读 · 0 评论 -
二叉树之Morriis遍历
使用Morris遍历算法,可以以O(1)的空间复杂度完成二叉树的遍历,但会破坏二叉树的结构。3. 如果cur有左子节点,则找到cur节点在中序遍历中的前驱节点pre(即cur左子树中最右的节点)。5. 如果pre的右子节点为cur,将其右子节点置为空,输出cur节点的值,然后将cur指向其右子节点。4. 如果pre的右子节点为空,将其右子节点指向cur,然后将cur指向其左子节点。2. 如果cur没有左子节点,则输出cur节点的值,然后将cur指向其右子节点。1. 初始化当前节点cur为根节点。原创 2024-08-04 21:07:22 · 125 阅读 · 0 评论 -
线性代数——奇异值分解
他们的本质都是一样的,都是通过分解来获取矩阵的核心特征,从运动角度来看都是将矩阵代表的运动分解为独立的旋转和伸缩。任意形状的矩阵都可以分解为一个正交矩阵,一个对角矩阵和另外一个正交矩阵的乘积。特征分解只是适用于,但是奇异值分解(SVD)与其不同,它适用于所有矩阵。原创 2024-07-28 21:45:11 · 234 阅读 · 0 评论 -
线性代数——特征分解
矩阵表示向量的运动和变换,矩阵分解就是找到合成的变换信息或者变换运动信息,找到合成变换中的具体旋转与伸缩信息。基的本质就是最基本的彼岸换单位或变换单元,决定了以何种变换尺度生成新的数据。特征分解是使用最广的矩阵分解之一,将矩阵分解成一组特征向量和特征值。特征值类似于向量的权重,特征值越大,说明特征向量越重要。是矩阵的特征向量,diag(lambda)为对角矩阵。,但是二维向量的基不都是单位矩阵,可以是任意一个方阵。可以通过分解 矩阵来发现矩阵一些不明显的特征和性质。原创 2024-07-28 21:27:09 · 279 阅读 · 0 评论 -
线性代数——范数
但是这个距离并非直接连接的距离,这只是其中的一种叫做欧氏距离,度量距离具有多样性,即范数的多样性。他是将向量映射到非负值的函数,直观来说范数是衡量从原点到。原创 2024-07-24 20:36:06 · 179 阅读 · 0 评论 -
如何写论文
需要写出的信息:1.文章做了一件什么事情(1句话概括即可)2.创新点、过程或怎么做的(2-3句话)3.可以得到什么结果(选出重要的结论,可以只定性,尽量定量讲解,2-3句话)4.可以写出该项的研究意义(吹吹牛,1句话)5.关键词(可能文章不需要,但是要写出来)需要写的信息:1.给出背景信息,一般由广泛到具体引出所研究的对象2.背景信息可以从现象、政策、大的全球背景、公认的某些问题3.参考文献的引用是必要的(最好是引用最新版的)4.避免一个普遍的观点的文章引用超过3篇,最好是1-2篇。原创 2024-07-07 08:57:39 · 293 阅读 · 0 评论 -
如何发表论文
注:有一些其他要求在一审结束后编辑会告诉你,或者你可以提前查看进行完成。也可以在小木虫查询一些期刊的信息和相关评价,投过稿的人分享的一些经验。1.可以根据参考文献选择期刊。3.学科筛选选择期刊。原创 2024-07-07 09:35:43 · 178 阅读 · 0 评论 -
教你如何让读论文
一些自己学习整理的笔记分享给大家(忽略丑字)原创 2024-07-07 09:38:45 · 114 阅读 · 0 评论