组合数公式
递推求组合数
应用场景:
数据范围小,且有取模条件
// c[a][b] 表示从a中选b个的方案数
for (int i = 0; i < N; i ++ )
for (int j = 0; j <= i; j ++ )
if (!j) c[i][j] = 1;
else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
预处理阶乘求逆元求组合数
应用场景
有取模条件,根据取模条件,如果模数是质数用费马小定理,用快速幂就可求逆元,否则用扩展欧几里得求逆元
费马小定理求逆元
// a 的 k 次方 mod p (p为质数)
int qmi(int a, int k, int p) //快速幂模板
{
int res = 1;
while (k)
{
if (k & 1) res = (long long)res * a % p;
a = (long long)a * a % p;
k >>= 1;
}
return res % p;
}
扩展欧几里得求逆元
// a 为求逆元的数,b 为模数,运算完成后 x 就是在模数为 b 下 a 的逆元
int exgcd(int a, int b, int &x, int &y)
{
if (!b)
{
x = 1, y = 0;
return a;
}
int d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
预处理阶乘的逆元
// fact为阶乘 infact为阶乘的逆元
fact[0] = infact[0] = 1;
for (int i = 1; i < N; i ++ )
{
fact[i] = (LL)fact[i - 1] * i % mod;
infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
}
最后运用开头的组合数公式将除法换成逆元乘法并取模就行。
卢卡斯定理求组合数
应用场景
求大组合数,
、
, 且 模数
较小的情况下。求逆元根据
的情况来定,为质数可用费马小定理,否则用扩展欧几里得求逆元
根据公式实现
#include<iostream>
using namespace std;
typedef long long LL;
int p;
int ksm(int a, int b) // 快速幂
{
int res = 1;
while (b)
{
if (b & 1)res = (LL)res * a % p;
a = (LL)a * a % p;
b >>= 1;
}
return res;
}
int C(int a, int b) // 组合数 C
{
int res = 1;
for (int i = 1, j = a; i <= b; i++, j--)
{
res = (LL)res * j % p;
res = (LL)res * ksm(i, p - 2) % p;
}
return res;
}
int lucas(LL a, LL b) // 卢卡斯
{
if (a < p && b < p) return C(a, b);
return (LL)C(a % p, b % p) * lucas(a / p, b / p) % p;
}
int main()
{
int n;
cin >> n;
while (n--)
{
LL a, b;
cin >> a >> b >> p;
int res = lucas(a, b);
cout << res << endl;
}
return 0;
}
分解质因数求组合数
引用场景
没有取模条件
用公式 对
,
,
分解质因数消去相同的因子,化简式子用高精度乘法运算解决问题
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
const int N = 5050;
int primes[N], cnt;//a以内的素数有多少个
bool st[N];
int sum[N];//因子p的k次方,存k
int a, b;
void get_primes(int n)//线性筛
{
for (int i = 2; i <= n; i++)
{
if (!st[i])
{
primes[cnt++] = i;
}
for (int j = 0; primes[j] <= n / i; j++)
{
st[primes[j] * i] = true;
if (i % primes[j] == 0)break;
}
}
}
int get(int a, int p)//get k
{
int sum = 0;
while (a)
{
sum += a / p;
a /= p;
}
return sum;
}
vector<int > mul(vector<int> &a, int b) // 高精度乘法
{
vector<int> c;
int t = 0;
for (int i = 0; i < a.size() || t; i++)
{
if (i < a.size()) t += a[i] * b;
c.push_back(t % 10);
t /= 10;
}
return c;
}
int main()
{
cin >> a >> b;
//筛素数
get_primes(a);
//
for (int i = 0; i < cnt; i++)
{
int p = primes[i];
//消去相同因子
sum[i] = get(a, p) - get(b, p) - get(a - b, p);
}
vector<int> res;
res.push_back(1);
for (int i = 0; i < cnt ; i++)
{
for (int j = 0; j < sum[i]; j++)
{
res = mul(res, primes[i]);
}
}
for (int i = res.size() - 1; i >= 0; i --) cout << res[i];
cout << endl;
return 0;
}