说一下下列优化后的冒泡排序的时间复杂度?

class Solution {
    public int[] bubble_sort(int[] nums) {
        int[] arr = Arrays.copyOf(nums, nums.length);
        for (int i = 0; i < arr.length - 1; i++) {
            boolean flag = true;
            for (int j = 0; j < arr.length - i - 1; j++) {
                if (arr[j] > arr[j + 1]) {
                    int tmp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = tmp;
                    flag = false;
                }
            }
            if (flag) {
                break;
            }
        }
        return arr;
    }
}

最好的情况下O(N);

最坏的情况下O(N * (N-1))   即O(N * N - N)  即 O(N * N)

在说一下没有优化后的冒泡排序的时间复杂度

class Solution {
    public int[] bubble_sort(int[] nums) {
        int[] arr = Arrays.copyOf(nums, nums.length);
        for (int i = 0; i < arr.length - 1; i++) {
            for (int j = 0; j < arr.length - i - 1; j++) {
                if (arr[j] > arr[j + 1]) {
                    int tmp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = tmp;
                }
            }
        }
        return arr;
    }
}

最好和最坏情况下时间复杂度都是O(N * (N-1))   即O(N * N - N)  即 O(N * N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿瞒有我良计15

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值