【离散数学】特殊图

欧拉图-戈尼斯堡七桥问题

设G是无孤立结点的图,若存在一条通路(回路),经过图中每边一次且仅一次,则称该通路(回路)为该图的一条欧拉通路(回路)

具有欧拉回路的图称为欧拉图

平凡图为欧拉图

欧拉通(回)路是经过图中所有边的通(回)路中长度最短的

无向欧拉图的判定定理

无向图G=<V,E>具有一条欧拉通路,当且仅当G是连通的,有且仅有零个或两个奇度数结点

无向图G=<V,E>具有一条欧拉回路,当且仅当G是连通的,并且所有结点的度数均为偶数

求无向图欧拉回路-Fleury算法

依次选边,每选一条边就从图中删去。选边条件:与上一条已选取的边关联;除非无边可选,否则不能选割边

有向欧拉图的判定定理

有向图G具有一条欧拉通路,当且仅当G是连通的,且除了两个结点(一个入度比出度大1,一个出度比入度大1)外,其余结点的入度等于出度
有向图G具有一条欧拉回路,当且仅当G是连通的,且全部点入度等于出度

哈密顿图-周游世界问题

设G是一个无向或有向图,若存在一条通路(回路),经过图中每个节点一次且仅一次,则称此通路(回路)为该图的一条哈密顿通路(回路)

具有哈密顿回路的图称为哈密顿图

平凡图为哈密顿图

哈密顿通路是经过图中所有结点的通路中长度最短的通路

哈密顿图的必要条件

设无向图G=<V,E>是哈密顿图,V1是V的任意非空子集,则p(G-V1)≤|V1|,其中p(G-V1)s是从G中删除V1后得到图的连通分支数

哈密顿通路的必要条件

设无向图G=<V,E>中存在哈密顿通路,则对V的任意非空子集V1,都有p(G-V1)≤|V1| + 1.

有割点的图一定不是哈密顿图

哈密顿通路的充分条件

设G=<V,E>是具有n个结点的简单无向图。如果对任意两个不相邻的结点u,v∈V,均有deg(u) + deg(v) ≥ n - 1,则G中存在哈密顿通路

哈密顿回路的充分条件

设G=<V,E>是具有n个结点的简单无向图。如果对任意两个不相邻的结点u,v∈V,均有deg(u) + deg(v) ≥ n,则G中存在哈密顿回路

deg(v)≥n/2就是哈密顿图

偶图

无向图G中结点集V可以划分为V1、V2两个子集,V1、V2交集为空,并集为V;任意一条边e的一端为v1,另一端为v2,称图G为偶图、二分图、二部图。V1和V2为互补结点子集,偶图通常记为G=<V1,E,V2>

完全偶图、完全二分图

V1和V2中每个结点,有且仅有一条边相关联。记为Kij,i=|V1|,j=|V2|

无向图G=<V,E>为偶图的充要条件是所有回路的长度均为偶数

平凡图和零图是特殊的偶图

偶图的匹配

就是寻找V1到V2单射

匹配判定条件(霍尔定理)

V1中任意k个结点至少与V2中k个结点相邻,k=1,2,……,|V1|(相异性条件)

t条件(充分条件)

设G=<V1,E,V2>是一个偶图:

  • V1中每个结点至少关联t条边(V1结点最小度数)
  • V2中每个结点至多关联t条边(V2结点最大度数)

则G中存在从V1到V2的匹配。t为正整数

平面图

如果能够把一个无向图G的所有结点和边画在平面上,使任何两条边都不会在非节点除交叉,称G为平面图。

:平面表示中由边所包围的内部不包含图的结点和边的区域。这个边的集合叫边界,边界的长度称为这个面的次数D®。区域面积优先的面叫有限面,无限的叫无限面

平面图中所有面次数之和等于边数的两倍

欧拉公式

G=<V,E>是连通平面图,若她有n个结点、m条边、r个面,则n - m + r = 2

欧拉公式推论一:G是一个(n,m)简单连通平面图,若m > 1,则m ≤ 3n - 6
欧拉公式推论二:G是一个(n,m)简单连通平面图,若每个面的次数至少为k(k ≥ 3),则 m ≤ k(n - 2) / (k - 2)

库拉托夫斯基定理

同胚:两个图G1、G2,或经过反复插入或消去2度结点后同构,则G1与G2同胚

收缩:在图G中删去边e,把e的两个端点u,v重合使用一个新的结点w代替,称为边e的收缩。

库拉托夫斯基定理

一个图是平面图的充要条件是它的任何子图都不与K5或K3,3同胚

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值