- 博客(12)
- 收藏
- 关注
原创 论文阅读:Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning
大语言模型专家将比较不同树的推理过程和结果,并根据他们的专业知识和经验做出最终决策。评估节点,并逐步构建局部博弈树,以在有限时间内识别最优或接近最优的解决方案。:例如,在24点游戏中,若中间步骤的剩余数字不符合输入数字组合,立即修正。若某棵树所有层均能生成有效输出,则激活(φi=1),否则终止(φi=0)若多数树结果一致,则采纳;有效减少了推理过程中的错误和偏差,并增强了整个框架的鲁棒性。仅选择最相关的推理树进行计算,而非对所有树进行全面计算。弥补个体的不足,从而提高模型从多个角度进行推理的能力。
2025-04-13 11:32:03
681
1
原创 阅读笔记:Improving Complex Reasoning with Dynamic Prompt Corruption
本文通过分析软提示在复杂推理中的双刃剑效应,提出DPC方法动态抑制其负向影响。实验表明,DPC在多种任务和模型上显著提升性能(最高+8.8%),为提示优化提供了新思路。图4a表明:浅层信息积累与深层信息流模式变化同时发生的概率远高于未观察到积累的情况,这表明信息积累的发生与深层信息流模式的变化之间存在很强的相关性。通过添加少量可训练的连续提示向量(软提示)来调整大型语言模型(LLM)的行为。例如,在GSM8K数据集中,某些软提示会引导模型生成错误的推理步骤。集中在问题和已生成的推理步骤上,而非软提示。
2025-04-13 11:26:09
732
原创 算法设计与分析知识点(下)
多段图(multi-segment graph):设图G=(V, E)是一个带权有向图,顶点集合 V 划分成 k 个互不相交的子集 Vi(2≤k≤n, 1≤i≤k),使得 E 中任何一条边(u, v),必有 u∈Vi,v∈Vi+m(1≤i<k, 1<i+m≤k),则称图G为多段图,称 s∈V1 为源点,t∈Vk 为终点。为了确定装入背包的具体物品,从V(n, C)开始进行回溯,如果V(n, C)>V(n-1, C),表明第 n 个物品被装入背包,前 n-1 个物品被装入容量为 C-wn 的背包中;
2024-12-26 20:11:58
794
原创 算法设计与分析知识点(上)
另外,动态规划法用表保存已求解过的子问题的解,再次碰到同样的子问题时不必重新求解,只需查询答案,故可获得多项式级时间复杂度,效率较高,而分治法中对于每次出现的子问题均求解,导致同样的子问题被反复求解,故产生指数增长的时间复杂度,效率较低。孙子问题的关键是从 5 和 7 的公倍数中找一个除以 3余 1的数 c1(70),从3 和 7 的公倍数中找一个除以 5 余 1 的数 c2(21),从 3 和 5 的公倍数中找一个除以 7 余 1 的数 c3(15),然后计算。最小凸多边形上的点称为凸包的。
2024-12-26 20:09:28
1765
原创 关于python学习的一些笔记
如果张量 x 的形状为 (batch_size, seq_length),那么经过 K.expand_dims(x, 2) 操作后,x 的形状将变为 (batch_size, seq_length, 1)。如果张量 x 的形状为 (batch_size, seq_length),那么经过 K.expand_dims(x, 1) 操作后,x 的形状将变为 (batch_size, 1, seq_length)这个错误通常是因为你在使用 Keras 的时候,导入的是旧版本的 Keras 库,而不是新版本的。
2024-04-29 22:06:25
1031
原创 关于无线感知的一些笔记
较低的信号水平”是指在数据的处理和分析过程中,将注意力集中在原始信号的基本特征和属性上,而不是在经过高级处理或复杂特征提取之后的抽象表示层面。由于杂波谱通常集中在直流分量和雷达重复频率的整数倍处,而 MTI 滤波器利用杂波与运动目标的多普勒频率的差异,使得滤波器的频率响应在直流和PRF(脉冲重复频率) 的整数倍处具有较深的阻带, 而在其他频点的抑制较弱, 从而通过较深的“凹口”抑制静止目标和静物杂波。和传统的卷积神经网络的不同之处在于,因果卷积不能看到未来的数据,它是单向的结构,不是双向的。
2024-04-29 21:56:07
1682
原创 智能计算系统课本知识汇总(下)
主要思想:基于YOLO直接回归bbox和分类概率的one-stage检测方法,结合Faster R-CNN中的anchor-box思想产生先验框,并且采用特征金字塔进行多尺度预测,在满足检测速度快的同时,大大提高了检测准确度。GAN的训练过程可看作是生成器和判别器之间的一个博弈过程,通过不断迭代优化,生成器逐渐学习生成更加逼真的样本,判别器逐渐提高判别真实样本和生成样本的准确性。边界扩充的主要目的是保证神经网络层的输入特征图和输出特征图的尺寸相同,此外边界扩充可以强化图像的边缘信息。
2024-01-08 21:54:01
1114
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人