还是记下吧,反复忘。=。=【遇到就更新下,你也可以提供给我来更新^_^】
学LLM,不再更新..
目录
2. ConfusionMatrix、dice、hd95、jaccard/iou、precision、sensitivity/recall、specificity、accuracy
4.医学数据集类型dicom、nii/nii.gz、nrrd、Analyze.(CT/MRI/PET)
1.TP、TN、FP以FN
-
TP:True Positive,被判定为正样本,事实上也是正样本 ,即蓝色与红色的交集
TN:True Negative,被判定为负样本,事实上也是负样本,即红色与蓝色以外区域(mask和预测以外的地方)
FP:False Positive,被判定为正样本,但事实上是负样本,即红色中除了蓝色部分(是预测但不是mask的地方)
FN:False Negative,被判定为负样本,但事实上是正样本,即蓝色中除了红色部分(是mask但不是预测的地方)
2. ConfusionMatrix、dice、hd95、jaccard/iou、precision、sensitivity/recall、specificity、accuracy
3D医学图像指标算法(搞3D医学图像分割的多看看他这论文):nnUNet/nnunet/evaluation/metrics.py at nnunetv1 · MIC-DKFZ/nnUNet · GitHub
3. Params和FLOPs
参数数量用Params表示,关系到模型大小,单位通常为M,由于通常参数用float32表示,所以模型大小是参数数量的4倍。
计算量用FLOPs表示,关系到算法速度,大模型的单位通常为G(10^9),小模型通常为M(10^6)。
4.医学数据集类型dicom、nii/nii.gz、nrrd、Analyze.(CT/MRI/PET)
- dicom:检查部位的影响切片,单帧或多帧常dicom转为nii.gz
- nii.gz:每个nii.gz包括header(尺寸、间距.....很多重要信息)+data(+extension),具体学习去看nii格式和nii.gz格式详解_.nii.gz-CSDN博客
- nrrd:读入网络时需要=.=
- Analyze:早期数据格式,被nii取代
- 涉及的修改window/level、重采样:CT影像数据DICOM与图像分割(paddle2.0) - 飞桨AI Studio星河社区CT医学影像中的重采样(spacing保持一致) - 知乎(不全,但方便理解)
5. pin_memory 和 non_blocking
内存可以分为 没锁的(pageable,可分页的) 和 锁了的(pinned)。
- 锁页内存和GPU显存之间的拷贝速度大约是6GB/s
- 可分页内存和GPU显存间的拷贝速度大约是3GB/s。
- GPU内存间速度是30GB/s,CPU间内存速度是10GB/s
'''
dataloader会在每次批量加载数据时将数据张量固定在CPU内存中,从而加速数据传输到GPU
计算机具备足够的内存资源,你可以尝试启用pin_memory以提高训练速度。
但如果你遇到内存不足或性能问题,可以考虑禁用它。
'''
train_loader = torch.utils.data.DataLoader(train_dataset,...,pin_memory=True)
for data, labels in train_loader:
data = data.to('cuda:0', non_blocking=True)
6.Transformer中的BN、LN、IN、GN
BatchNorm就是通过对batch size这个维度归一化来让分布稳定下来。
LayerNorm则是通过对Hidden size这个维度归一化来让某层的分布稳定。
参考:Layer Normalization(LN) 层标准化 (为什么Transformer用LN)(手写手动实现LN)-CSDN博客