前言
技术背景与价值
动态计算图是PyTorch区别于TensorFlow等框架的核心特性,允许在运行时动态构建和修改计算图,特别适合处理变长输入(如自然语言处理)和复杂控制流场景。
当前技术痛点
- 静态图框架(如早期TensorFlow)调试困难
- 复杂控制流(循环/条件分支)实现繁琐
- 模型结构调整需要重新编译计算图
解决方案概述
PyTorch动态图(Autograd)提供:
- 按需构建的计算图
- 实时梯度计算
- 与Python控制流无缝集成
目标读者说明
- 🐍 掌握Python基础语法的开发者
- 🧠 对神经网络有基本理解的初学者
- 🔧 需要灵活建模的研究人员
一、技术原理剖析
核心概念图解