目录
2.为什么left = mid + 1, right = mid - 1
2.为什么left = mid + 1, right = mid ?
2.为什么left = mid + 1, right = mid ?
一,前言
相信各位小伙伴在初次接触二分查找算法时很容易理解,很快就上手写代码了,可是代码运行时总是出现各种各样的错误,得不到预期的结果。我听有位大佬说过:“二分查法思想很简单,但细节是魔鬼!” 确实如此,我也为这些细节抓狂过很多次。下面我就针对这些细节进行整理,比如:中值mid 是否应该加一,最左侧索引left,最右侧索引right应该怎么设置,以及结束条件,划分区间区间,以及不同场景下的使用模板。希望能够帮到各位码友。
二分查找的使用前提:要处理的数组必须是有序的。
二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。
二,细节整理,不同场景下的使用模板
1.二分查找的框架
计算 mid 时需要技巧防止溢出,建议写成: mid = left + (right - left) / 2; 这里为了方便大家理解我还是用mid = (right + left) / 2;
话不多说,直接看代码。
int BinarySearch(vectory<int>& nums, int target)
{
int left = 0, right = ***;
while(***)
{
int mid = (right + left) / 2;
if (nums[mid] == target)
{
***
}
else if (nums[mid] < target)
{
left = ***
}
else if (nums[mid] > target)
{
right = ***
}
}
return ***;
}
2.寻找一个数(基本的二分搜索)
二、寻找一个数(基本的二分搜索)
int binarySearch(vectory<int>& nums, int target)
{
int left = 0;
int right = nums.size() - 1;
while(left <= right)
{
int mid = (right + left) / 2;
if(nums[mid] == target) return mid;
else if (nums[mid] < target) left = mid + 1;
else if (nums[mid] > target) right = mid - 1;
}
return -1;
}
1.为什么 while(left <= right)
因为我们规定的是闭区间【left, right】 (right = nums.size() - 1)
2.为什么left = mid + 1, right = mid - 1
目标区间【left, right】是闭区间,当搜索到nums[mid] 时,如果不满足nums[mid] == target,就去掉nums[mid],这样区间就被划分为[left, mid - 1] 或者 [mid + 1, right]。
3.此算法有什么缺陷?
如果给你有序数组 nums = [1,2,2,2,3],target = 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。
这样的需求很常见。也许有人会说,找到一个 target 索引,然后向左或向右线性搜索不行吗?
可以,但是不好,因为这样会使算法的时间复杂度大大增加,我们用二分法就是看中它的效率,而不是给自己挖坑。那该如何解决?
下面我们就要讨论寻找左右两侧边界的二分搜索。
3.寻找左侧边界的二分搜索
int LeftBound(vector<int>& nums, int target)
{
if (nums.size() == 0) return -1;
int left = 0;
int right = nums.size();
while (left < right)
{
int mid = (left + right) / 2;
if (nums[mid] == target)
{
right = mid; //因为我们需找到 target 的最左侧索引,所以当 nums[mid] == target 时不要立即返回,而要收紧右侧边界以锁定左侧边界
}
else if (nums[mid] < target)
{
left = mid + 1;
}
else if (nums[mid] > target)
{
right = mid;
}
}
return left;
}
1.为什么 while(left < right)
因为 int right = nums.size(); 目标区间变成了左闭右开[left, right)。
2.为什么left = mid + 1, right = mid ?
目标区间左闭右开[left, right),当检查过nums[mid]后就去掉nums[mid],把区间划分为 [left, mid) 或 [mid + 1, right)。当left == right时跳出while循环,此时返回left或者right结果都一样。
4.寻找右侧边界的二分查找
int RightBound(vector<int>& nums, int target)
{
if (nums.size() == 0) return -1;
int left = 0;
right = nums.size();
while (left < right)
{
int mid = (left + right) / 2;
if (nums[mid] == target)
{
left = mid + 1; //因为我们需找到 target 的最右侧索引,所以当 nums[mid] == target 时不要立即返回,而要收紧左侧边界以锁定右侧边界。
}
else if (nums[mid] < target)
{
left = mid + 1;
}
else if (nums[mid] > target)
{
right = mid;
}
}
return left - 1;// 注意
}
1.为什么 while(left < right)
因为 int right = nums.size(); 目标区间变成了左闭右开[left, right)。
2.为什么left = mid + 1, right = mid ?
目标区间左闭右开[left, right),当检查过nums[mid]后就去掉nums[mid],把区间划分为 [left, mid) 或 [mid + 1, right)。当left == right时跳出while循环,此时返回left-1或者right-1结果都一样。
又因为收紧左侧边界时必须 left = mid + 1,所以最后无论返回 left 还是 right,必须减一
三,趁热打铁(leetcode 题解:第一个错误的版本)
1.题目描述
你是产品经理,目前正在带领一个团队开发新的产品。不幸的是,你的产品的最新版本没有通过质量检测。由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的。
假设你有 n 个版本 [1, 2, ..., n],你想找出导致之后所有版本出错的第一个错误的版本。
你可以通过调用 bool isBadVersion(version) 接口来判断版本号 version 是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。
2.解题思路
相比看完上面内容后,大家马上就知道要用二分法寻找左侧边界。
直接看代码
class Solution {
public:
int firstBadVersion(int n) {
int left = 1, right = n;
while (left < right) // 循环直至区间左右端点相同
{
int mid = left + (right - left) / 2; // 防止计算时溢出
if (isBadVersion(mid))
{
right = mid; // 答案在区间 [left, mid) 中
}
else
{
left = mid + 1; // 答案在区间 [mid+1, right) 中
}
}
return left; // 此时有 left == right,区间缩为一个点,即为答案
}
};