【ubuntu】idrac 安装系统 ubuntu-22.04.3

登录远控(Integrated Dell Remote Access Controller 9)

查看存储

ctrl + R 手动 方式配置raid配置信息

idrac 后台方式-raid配置信息,

清理raid配置信息,删除虚拟磁盘-控制器点重新配置

如果找不到操作菜单可以配置中找到对应的菜单选项

点击确定

确认 进入队列等待

队列已完成

配置raid-控制器点击创建虚拟磁盘(创建boot 分区)

本次是raid5 (一般boot是做的raid1 + 数据盘视情况定 )  点击下一步

勾选全部磁盘,下一步

分配大小,下一步

立即应用,进入处理队列 等待。。

创建虚拟磁盘(创建数据export 分区)-点击高级配置

名称填入export ,现有组,点击下一步

选择现有raid组,下一步

容量:默认给最大,下一步

立即应用,进入处理队列 等待。。

最后的配置信息

关于系统重启 仪表盘-->热启动

启动虚拟控制台

连接虚拟介质-iso镜像文件

选择镜像文件,点击映射设备

查看介质信息

点击启动 选择虚拟CD/DVD/ISO 选项

点击是,然后启动系统-打开系统电源

选择Ubuntu server with the hwe kernel,回车

Ubuntu Server将带有HWE内核,并在系统中使用较新的硬件驱动程序和内核更新

进入系统安装画面 选择 English 回车

键盘配置 默认,回车

默认选择 Ubuntu Server  回车,虚拟机可以选择最小化安装

配置网卡,选中第一个网卡回车

选中 IPv4 回车

选择静态 手动配置 Manual  回车

配置完成保存回车

网络代理,默认,回车

使用阿里镜像源

磁盘分区:选择要装系统的磁盘。

取消LVM配置

挂载 ,可以跳过,可以装机之后挂载

格式化

创建登录用户(不能跳过)

用户  installer

密码 

默认不升级到pro,跳过

安装openssl server

安装依赖

安装完成 重启动。

安装过程中出现错误,按下 ENTER 回车键让它继续。

等待进入登录界面

<think>好的,用户之前问过如何为不同部门的公司网络划分网段和实现高可用性,现在又转向询问GPU服务器的运维包括哪些方面。这说明用户可能是在负责公司的基础设施建设,或者正在规划IT架构,需要全面了解不同方面的运维知识。 首先,我需要明确GPU服务器运维的核心内容。用户可能想知道从硬件到软件,再到监控和优化,具体要关注哪些点。他们可能担心如何确保GPU服务器的稳定性、性能以及安全性,尤其是在高负载或长时间运行的情况下。 考虑到用户之前的网络规划问题,他们可能对高可用性、冗余设计有特别关注。所以在回答GPU服务器运维时,可能需要强调硬件冗余、散热、电源管理这些方面,因为这些直接影响服务器的可用性。同时,软件层面的驱动和固件更新、任务调度、容灾备份也是关键点。 另外,用户可能对成本优化感兴趣,比如如何合理分配GPU资源,避免浪费,或者如何监控使用情况来调整资源分配。需要提到资源监控工具和策略,比如Prometheus、Grafana等。 安全性方面,用户可能担心数据泄露或未经授权的访问,尤其是在处理敏感数据时。所以需要包括物理安全、网络安全、权限控制等内容。 用户还可能想知道具体的运维工具和最佳实践,比如使用Kubernetes进行容器编排,或者Ansible进行自动化部署。这些工具能帮助他们高效管理GPU服务器集群。 最后,应该考虑用户的实际应用场景,比如是否用于机器学习训练、推理、高性能计算等,不同场景下的运维重点可能有所不同。需要给出通用性的建议,同时提示根据具体业务调整策略。 总结下来,回答需要结构清晰,涵盖硬件、软件、监控、安全、优化等方面,并且结合用户之前的关注点,比如高可用性和网络架构,来提供全面的运维指南。</think>--- ### 一、GPU服务器运维核心目标 - **稳定性**:确保7×24小时持续运行(尤其是训练/推理任务) - **性能优化**:最大化GPU利用率(避免显存/算力闲置) - **安全保障**:防止数据泄露与算力滥用 --- ### 二、硬件运维 #### 1. **物理环境管理** - **散热要求**:GPU密集场景需强制水冷(建议机柜温度≤25℃) - **电源冗余**:双路PDU供电 + UPS(按GPU功耗预留20%余量) - 示例:NVIDIA A100单卡功耗250W,8卡服务器需至少2500W电源 - **硬件监控**:通过IPMI/iDRAC/iLO实时查看: - GPU温度(阈值设置:≤85℃报警) - 风扇转速、ECC内存错误计数 #### 2. **故障处理** - **常见故障**: - GPU显存报错(需执行`nvidia-smi --gpu-reset`) - PCIe通道降速(检查金手指氧化或接触不良) - **备件策略**:至少保留10%的GPU卡、电源模块作为热备 --- ### 三、软件与驱动管理 #### 1. **基础环境** - **驱动版本**:严格匹配CUDA Toolkit版本(如NVIDIA驱动470.x对应CUDA 11.4) - **依赖隔离**:推荐使用Docker/Kubernetes部署(避免库冲突) - 基础镜像示例:`nvidia/cuda:11.8.0-base-ubuntu22.04` #### 2. **任务调度** - **资源分配**:通过Kubernetes Device Plugin或Slurm集群管理: ```bash # Slurm提交GPU任务示例 sbatch --gres=gpu:tesla_v100:2 train.sh ``` - **抢占策略**:为高优先级任务预留GPU(通过`nvidia-smi -c 3`独占模式) --- ### 四、监控与性能调优 #### 1. **监控指标** | 指标 | 工具 | 报警阈值 | |---------------------|--------------------------|---------------------| | GPU利用率 | DCGM Exporter + Prometheus | <10%持续1小时 | | 显存占用率 | nvidia-smi | >90%持续10分钟 | | PCIe带宽 | gpustat --debug | 持续降速至x8模式 | #### 2. **性能优化手段** - **计算优化**:启用TensorCore(`TF_ENABLE_CUBLAS_TENSOR_OP_MATH=1`) - **显存压缩**:使用NVIDIA A100的Memory P2P特性 - **IO瓶颈缓解**: - 共享存储:部署GPUDirect RDMA(InfiniBand网络) - 本地缓存:用NVMe SSD构建RAID0作为临时存储 --- ### 五、安全与容灾 #### 1. **访问控制** - **物理安全**:BIOS/UEFI禁用USB启动 + 机柜指纹锁 - **权限分级**: - 普通用户:仅能通过JupyterLab提交任务 - 管理员:SSH密钥登录 + 二次验证 #### 2. **数据保护** - **加密传输**:NVIDIA GPUDirect Storage(启用AES-256加密) - **容灾方案**: - 实时备份:对训练checkpoint启用S3对象存储同步 - 断点续训:通过Horovod Elastic自动恢复任务 --- ### 六、典型运维场景 #### 场景1:多用户资源争用 **解决方案**: - 部署vGPU(如NVIDIA vComputeServer- 配置Kubernetes ResourceQuota: ```yaml resources: limits: nvidia.com/gpu: 2 ``` #### 场景2:驱动版本冲突 **处理流程**: 1. 创建驱动隔离环境:`sudo apt-mark hold cuda-drivers` 2. 使用容器化部署:`docker run --gpus all --cgroup-parent=/gpuserver nvidia/cuda:11.8.0` --- ### 七、运维工具链推荐 | 类型 | 工具 | 用途 | |------------|------------------------|-------------------------------| | 监控 | Grafana + DCGM Exporter | 可视化GPU集群状态 | | 部署 | Ansible GPU Playbook | 批量安装驱动/CUDA | | 日志 | ELK Stack | 分析NVIDIA驱动内核日志 | | 自动化测试 | NVIDIA DGXtest | 验证GPU硬件稳定性 | > **注**:对于大规模集群(≥32台GPU服务器),建议部署NVIDIA Base Command Manager实现集中运维。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值