我也是初识数据结构,本来这一个题目在本站上有许多的解决办法,但是似乎使用的方法就是链表居多,而且可能有点也有点难以理解。下面代码绝对适合像我这样的小白,但是有的问题还是没有解决,就是没怎么去考虑算法结构了,可能复杂度就有点不合人意,但是能跑起来不就是小白最大的心愿吗,代码如下:
#include<iostream>
#include<string>
using namespace std;
const int n = 26; //定义编码字符个数
char ch[n]; //定义字符存储数组
int w[n]; //定义字符权重存储数组
//定义一个结构体,用作结点信息存储
struct ElemType {
string code=""; //用来存储该字符的哈夫曼编码
char data; //用来存储叶子节点的字符
int weight; //假设权值为整数,用来存储叶子结点的权重
int parent, lchild, rchild; //用来存储父节点,以及左右孩子结点
int index = -1;//用来存储原来结构体数组下标,以便于后面给i1,i2赋值
int LR; //用来唯一标记该结点是左孩子还是右孩子
};
void Select(ElemType huffTree[], int &i1, int &i2) { //选择排序,以便于通过每个根节点的权重来获取两个权重最小的根节点下标志
int count = 0; //用来计数,方便后边给i1和i2赋值
ElemType reserve[2 * n - 1];
for (int i = 0; i < 2 * n - 1; i++) { //将结构体数组的元素下标初始化
huffTree[i].index = i; //将结构体里面的index给初始化,防止排序过后顺序变化而导致获取的原来下标不是之前的数组小标
reserve[i] = huffTree[i];//同时将reserve[i]用来暂时保存传入的哈夫曼数,以便于后边将这一个给赋值回来,
}
for (int i = 0; i < 2 * n - 1; i++) { //使用冒泡排序对数组通过权重进行从小到大排序
for (int j = 0; j < 2 * n - 1 - i; j++) {
if (huffTree[j].weight > huffTree[j + 1].weight) {
ElemType temp = huffTree[j + 1];
huffTree[j + 1] = huffTree[j];
huffTree[j] = temp;
}
}
}
for (int i = 0; i < 2 * n - 1; i++) { //遍历huffTree数组,当排好了序的数组遍历到第一个结构体的parent=-1时候将其赋值给i1,之后小中断此循环,之后在进行相似操作,以获取i2
if (count == 0 && huffTree[i].parent == -1) { //定义count方便用来获取权重最小的和倒数第二小的结点
i1 = huffTree[i].index;
count = 1;
continue; //找到第一个之后暂时终止程序,以防两个最小的被赋值为同一个下标
}
if (count == 1 && huffTree[i].parent == -1) {
i2 = huffTree[i].index;
break; //找到下标后就可以中断
}
}
//排序过后将haffmanTree恢复原来顺序
for (int i = 0; i < 2*n-1; i++) {
huffTree[i] = reserve[i];
}
}
void input(char ch[],int w[]) {
cout << "请输入" << n << "个字符:" << endl;
for (int i = 0; i < n; i++) {
cin >> ch[i];
}
cout << "请输入每个字符对应的权重:" << endl;
for (int i = 0; i < n; i++) {
cin >> w[i];
}
cout << endl;
}
void createHuffmanTree(ElemType huffTree[], int w[], char ch[]) {
int i, k, i1, i2;//使用i1和i2用来存储权值权值最小的两个根节点
cout << endl;
for (i = 0; i < 2 * n - 1; i++) { //刚开始所有结点设置为没有双亲和孩子,由于有n个叶子结点就有2*n-1个节点,所以创建创建2*n-1个结点用来存储
huffTree[i].parent = -1;//指向-1表示没有指向任何一个结点
huffTree[i].lchild = huffTree[i].rchild = -1;
huffTree[i].weight = 0x7fffffff; //权重赋初值为无穷大,以便于后边排序从而寻找i1和i2
huffTree[i].data = '\0';//给所有的结构体的字符赋值为空字符
}
for (i = 0; i < n; i++) { //储存叶子结点的权值和对应的字符
huffTree[i].weight = w[i];
huffTree[i].data = ch[i];
}
for (k = n; k < 2 * n - 1; k++) { //进行n-1次合并,至于为什么是n-1次,这是由于每一次合并都会产生一个新的结点,而除了叶子结点外所有的结点(n-1个)全是合并而来,所以就要进行n-1次合并
Select(huffTree, i1, i2); //权值最小的根节点下标为i1和i2
huffTree[k].weight = huffTree[i1].weight + huffTree[i2].weight; //新建立的结点权重就是两个子节点权重之和
huffTree[i1].parent = huffTree[i2].parent = k; //设置父索引是k
huffTree[k].lchild = i1; huffTree[k].rchild = i2; //设置左子索引是i1,右子索引是i2
huffTree[i1].LR = 0; huffTree[i2].LR = 1; //用来唯一的表示是左孩子还是右孩子
cout << "第" << k - n + 1 << "次结点合并权值最小的两个根节点下标:";
cout << i1 << "和" << i2 << endl;
}
}
void huffTreeStruct(ElemType huffTree[]) {
cout << "\n哈夫曼树结构:" << endl;
cout << "下标 " << "权重 " << "父索引 " << "左子索引 " << "右子索引 " << "字符 " << endl;
for (int i = 0; i < 2 * n - 1; i++) {
cout << i << "\t" << huffTree[i].weight << "\t" << huffTree[i].parent << "\t" << huffTree[i].lchild << "\t" << huffTree[i].rchild << "\t " << huffTree[i].data << endl;
}
cout << endl;
}
//根据权重来实现哈夫曼编码
void EnHuffmanCode(ElemType huffTree[]) {
for (int i = 0; i < n; i++) { //有n个叶子结点,就要进行n次编码,左子树编码为0,右子树编码为1的规则
int j = i; //利用j来存储i以便于后面不至于改变i的值
while (huffTree[i].parent != -1) { //循环至根节点停止
if (huffTree[i].LR == 0) { //如果该叶子结点的索引等于他父节点的左孩子的索引,也就是判断该结点是他父节点的左孩子,就给编码前面加上"0"
huffTree[j].code = "0" + huffTree[j].code; //如果是左孩子就在前面添加上"0"字符
i = huffTree[i].parent; //将i用父节点的下标代替
}
if (huffTree[i].LR == 1) { //如果该叶子结点的索引等于他父节点的右孩子的索引,也就是判断该结点是他父节点的右孩子,就给编码前面加上"1"
huffTree[j].code = "1" + huffTree[j].code;
i = huffTree[i].parent; //将i用父节点的下标代替
}
}
i = j; //将保存了i的j赋值给i
}
}
void printCode(ElemType huffTree[]) {
cout << "对输入字符的哈夫曼编码:" << endl;
for (int i = 0; i < n; i++) {
cout << huffTree[i].data<<"的编码是:"<<huffTree[i].code << endl;
}
}
int main() {
input(ch,w);
cout << "------------------结果------------------" << endl;
ElemType huffTree[2 * n];
createHuffmanTree(huffTree, w, ch);
EnHuffmanCode(huffTree);
huffTreeStruct(huffTree);
printCode(huffTree);
return 0;
}
问题在于,这一个不是一个可变的数组(只能通过改程序顶部那一个n的取值来解决了),还有就是这一个复杂度有点高,还有就是没有分文件写和有关类的定义.若有问题欢迎大佬指正
ps.一次运行结果
请输入26个字符:
a b c d e f g h i j k l m n o p q r s t u v w x y z
请输入每个字符对应的权重:
10 23 41 2 65 3 1 5 3 77 45 43 23 14 32 56 23 76 22 66 67 43 46 17 19 91
------------------结果------------------
第1次结点合并权值最小的两个根节点下标:6和3
第2次结点合并权值最小的两个根节点下标:5和8
第3次结点合并权值最小的两个根节点下标:26和7
第4次结点合并权值最小的两个根节点下标:27和28
第5次结点合并权值最小的两个根节点下标:0和13
第6次结点合并权值最小的两个根节点下标:29和23
第7次结点合并权值最小的两个根节点下标:24和18
第8次结点合并权值最小的两个根节点下标:1和12
第9次结点合并权值最小的两个根节点下标:16和30
第10次结点合并权值最小的两个根节点下标:31和14
第11次结点合并权值最小的两个根节点下标:2和32
第12次结点合并权值最小的两个根节点下标:11和21
第13次结点合并权值最小的两个根节点下标:10和22
第14次结点合并权值最小的两个根节点下标:33和34
第15次结点合并权值最小的两个根节点下标:15和35
第16次结点合并权值最小的两个根节点下标:4和19
第17次结点合并权值最小的两个根节点下标:20和17
第18次结点合并权值最小的两个根节点下标:9和36
第19次结点合并权值最小的两个根节点下标:37和25
第20次结点合并权值最小的两个根节点下标:38和39
第21次结点合并权值最小的两个根节点下标:40和41
第22次结点合并权值最小的两个根节点下标:42和43
第23次结点合并权值最小的两个根节点下标:44和45
第24次结点合并权值最小的两个根节点下标:46和47
第25次结点合并权值最小的两个根节点下标:48和49
哈夫曼树结构:
下标 权重 父索引 左子索引 右子索引 字符
0 10 30 -1 -1 a
1 23 33 -1 -1 b
2 41 36 -1 -1 c
3 2 26 -1 -1 d
4 65 41 -1 -1 e
5 3 27 -1 -1 f
6 1 26 -1 -1 g
7 5 28 -1 -1 h
8 3 27 -1 -1 i
9 77 43 -1 -1 j
10 45 38 -1 -1 k
11 43 37 -1 -1 l
12 23 33 -1 -1 m
13 14 30 -1 -1 n
14 32 35 -1 -1 o
15 56 40 -1 -1 p
16 23 34 -1 -1 q
17 76 42 -1 -1 r
18 22 32 -1 -1 s
19 66 41 -1 -1 t
20 67 42 -1 -1 u
21 43 37 -1 -1 v
22 46 38 -1 -1 w
23 17 31 -1 -1 x
24 19 32 -1 -1 y
25 91 44 -1 -1 z
26 3 28 6 3
27 6 29 5 8
28 8 29 26 7
29 14 31 27 28
30 24 34 0 13
31 31 35 29 23
32 41 36 24 18
33 46 39 1 12
34 47 39 16 30
35 63 40 31 14
36 82 43 2 32
37 86 44 11 21
38 91 45 10 22
39 93 45 33 34
40 119 46 15 35
41 131 46 4 19
42 143 47 20 17
43 159 47 9 36
44 177 48 37 25
45 184 48 38 39
46 250 49 40 41
47 302 49 42 43
48 361 50 44 45
49 552 50 46 47
50 913 -1 48 49
对输入字符的哈夫曼编码:
a的编码是:011110
b的编码是:01100
c的编码是:11110
d的编码是:100100101
e的编码是:1010
f的编码是:10010000
g的编码是:100100100
h的编码是:10010011
i的编码是:10010001
j的编码是:1110
k的编码是:0100
l的编码是:0000
m的编码是:01101
n的编码是:011111
o的编码是:10011
p的编码是:1000
q的编码是:01110
r的编码是:1101
s的编码是:111111
t的编码是:1011
u的编码是:1100
v的编码是:0001
w的编码是:0101
x的编码是:100101
y的编码是:111110
z的编码是:001