36期题目解析

  1. 题目名称:查找点在自然区间的坐标

    定义:实数轴上的一个区间由左右两个端点,假设区间是左闭右开的,例如区间[0,1) 给定一个有序的不重合非负整数区间列表 range_list :[ [0,1), [3,4) ] 该非负整数区间列表将实数轴分割成了这些区间列表range_list_nature_ext : [(-∞,0),[0,1),[1,3),[3,4),[4,+∞)] 我们称 range_list_nature_ext 为由range_list 扩展的 自然区间

    问题:写一个查找算法,对于给定非负整数区间列表 range_list ,查找一个非负整数
    p 落在了 range_list_nature_ext 的那个区间,返回那个区间的在 range_list_nature_ext 里的下标,我们称这个下标为非负整数 prage_list 里的 自然坐标

    输入描述:

    第一行输入要查找的非负整数 p,以及区间列表个数 N,用空格分开
    第二行到第N+1行输入非负整数区间列表的每个区间,这些区间列表不重叠,按在实数轴上从左到右的顺序挨个输入,区间的两个坐标用空格分开

    输出描述:

    输出一行,包含非负整数 p 的自然坐标

    输入样例:

    12 2
    0 10
    15 20
    

    输出样例:

    2
    

主函数后续再补上

/**
  *@param: N = vector.size();  
  *@param: P为需要确定区间位置的值;
  *@param: vector 为给定的区间列表;
  */
public static int solution(int P, int N, ArrayList<ArrayList<Integer>> vector){
  int result = 0;
  // TODO: 请在此编写代码
  ArrayList<Integer> arr = new ArrayList<>();
  //如果数组为:{[2,5), [9, 23), [24, 50)}
  //那它的自然数组为:{[-∞, 2), [2, 5), [5, 9), [9, 23), [23, 24), [24, 50),[50, +∞)}
  //arr为{2, 5, 9, 23, 24, 50}
  for(int i = 0; i < N; i ++){
    for(int j = 0; j < 2; j ++){//区间列表为[a, b],固定为2个数
      arr.add(vector.get(i).get(j));//将区间列表的每一个数拿出来放到数组arr中
    }
  }
  if(p < arr.get(0)){
    result = 0;
  }else{
    result = 1;//此处判断是从下标为1开始的
    for(int m = 0; m < arr.size(); m ++){//在数组中循环
    if(P >= arr.get(m) && P < arr.get(m + 1)){
      //arr固定为升序数组,循环判断p值在arr中的位置,
      //每循环一次,下标加一
      break;//找到位置后跳出循环
    }
    result ++;
  }
}
  return result;
}

待更新…

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

躺平的小菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值