特征工程概念----day03

特征工程(Feature Engineering)是指在机器学习和数据挖掘中,通过利用领域专业知识和数据分析技巧,将原始数据转换成更适合机器学习模型的特征(数据集中的各个列或属性)的过程。特征工程的目的是提取数据中的关键信息,使得机器学习算法能够更好地理解数据,并从中学习模式以进行预测或分析。

特征工程的重要性:

  1. 数据表达的有效性:好的特征能够更好地表达数据之间的关系和模式,从而提升模型的表现。

  1. 模型性能的改进:通过特征工程,可以减少噪声和冗余信息,帮助模型更准确地捕捉数据的本质。

  1. 降低计算复杂度:经过特征工程处理后的特征可以减少模型的复杂度,提升计算效率和模型训练速度。

常见的特征工程方法:

  1. 缺失值处理:填充缺失值,或者通过模型预测进行填充。

  1. 数据标准化和归一化:确保不同特征具有相似的尺度,避免某些特征对模型影响过大。

  1. 特征编码:将分类数据转换为数值形式,如独热编码、标签编码等。

独热编码(One-Hot Encoding)

特点:将每个分类变量的每个可能取值转换为一个新的二进制特征,其中一个特征是1(存在),其他特征是0。

适用场景:适用于分类变量无序、无大小关系的情况,例如颜色(红、绿、蓝)、国家(美国、加拿大、澳大利亚)等。

示例:如果有三种颜色(红、绿、蓝),则独热编码会将这三种颜色分别编码为[1, 0, 0]、[0, 1, 0]、[0, 0, 1]。

标签编码(Label Encoding)

特点:将每个分类变量的每个可能取值映射为一个整数标签。

适用场景:适用于分类变量有序、有大小关系的情况,例如等级(低、中、高)或年龄组(青年、中年、老年)等。

示例:如果有三个等级(低、中、高),则标签编码可以将它们分别映射为0、1、2。

  1. 特征选择:选择最相关或最具预测能力的特征,排除不重要的特征,以提高模型的泛化能力。

  1. 特征降维:使用主成分分析(PCA)等技术降低数据的维度,减少模型的复杂度。

主成分分析(PCA)是一种常用的数据降维技术,用于减少数据集的维度,同时保留数据集中的关键信息。它通过线性变换将原始数据映射到一个新的坐标系中,新坐标系的选择是以数据的方差为依据的,从而使得映射后的数据在第一个主成分(方差最大的方向)上具有最大的方差,依次类推。

具体来说,PCA的主要步骤包括:

  1. 数据标准化:对原始数据进行标准化处理,确保每个特征具有相同的重要性。

  1. 计算协方差矩阵:计算标准化后数据的协方差矩阵自行检索,一些视频的讲解很详细,给点建议先弄懂方差、协方差在学习协方差矩阵

  1. 计算特征值和特征向量:通过对协方差矩阵进行特征值分解或奇异值分解,得到特征值和对应的特征向量。

  1. 选择主成分:按照特征值从大到小的顺序,选择前k个特征值对应的特征向量作为主成分,其中k是希望保留的新特征空间的维数。

  1. 数据转换:使用选定的特征向量构造投影矩阵,将原始数据映射到新的k维空间中。

PCA的优势在于能够去除数据中的冗余信息,减少数据的复杂性,同时保留数据中的主要结构。它常用于降维处理,数据可视化,以及去除数据中的噪声。

  1. 特征组合:通过数学运算、交叉特征等方式,创造新的特征以提升模型的表现。

  1. 时间序列特征提取:从时间序列数据中提取统计特征或时间相关特征,帮助模型预测未来趋势。

总结:

特征工程是数据预处理中至关重要的一步,它直接影响了机器学习模型的训练效果和泛化能力。通过合理的特征工程,可以使得模型更准确地学习数据的模式和规律,从而提高预测的准确性和可解释性。

  • 9
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值