一.前置知识
-
数组, 优点:随机访问,查询效率高 ;缺点:数组大小有限,扩容机制消耗性能,增删较慢。
-
链表,优点:增删较快;缺点:不支持随机索引,查找需要遍历链表。
-
散列表(哈希)整合以上两种结构的优势:随即索引,动态扩容
hash核心理论:将任意长度的输入,通过Hash算法变成固定长度的输出。这个映射的规则就是对应的Hash算法,而原始数据映射后的二进制串就是哈希值。
Hash特点:
- 从hash值不能反向推到出原始的数据
- 输入数据的微小变化会得到不同的hash值,相同的数据得到相同的hash值
- hash冲突的概率要小(hash冲突:两个不同的数据通过hash算法映射成相同的hash值,我们应该避免)
- 哈希算法的执行效率要高效,长的文本也能快速得到哈希值
二.HashMap原理
1.继承体系结构
2.HashMap底层结构
jdk1.8 的HashMap底层由数组(table)+链表+红黑树构成。当我们new HashMap()时,不会对table数组进行初始化,只会对初始大小initialCapacity和扩容阈值threshold,此时table=null。
当执行第一次put方法时,采用懒加载,table根据initialCapacity进行数组大小初始化。
数组中每个位置称为一个桶位,桶位中存放我们的Node结点。在我们使用put向散列表中添加数据时,我们会根据key对象的哈希值通过哈希扰动函数得到一个新的哈希值存入Node结点中,我们先看看HashMap中是怎么定义Node结点的
static class Node<K,V> implements Map.Entry<K,V> {
//key通过哈希扰动后获得的哈希值
final int hash;
//key
final K key;
//value
V value;
//当转化为链表或红黑树时,当前结点的下一个结点
Node<K,V> next;
…………其他方法不展示
}
得到了hash值后,底层通过路由算法 i = (n - 1) & hash 得到该key对应存放在散列表中 ,如果对应的桶中没有元素,则直接将node放入桶中,若桶中有元素,则发生了哈希碰撞,我们需要判断此时的结点是链表还是红黑树,并将node结点加入到链表(链化)或是红黑树(树化)中。
当然put加入元素后,我们还要考虑是否超出了扩容阈值,超出则要进行扩容。
具体请看后面的源码解析
三.HashMap底层源码
重点概要:
- HashMap成员变量
1.HashMap中重要的常量与成员变量
private static final long serialVersionUID = 362498820763181265L;
//默认缺省table大小
//当创建HashMap时没有指定table大小时,用默认常量16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//table数组的最大长度2^30
static final int MAXIMUM_CAPACITY = 1 << 30;
//缺省负载因子:默认的负载因子loadFactor
//根据负载因子判断何时进行扩容较为合理
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//树化阈值,当链表长度达到8时,转化为红黑树
static final int TREEIFY_THRESHOLD = 8;
//树降级阈值,删除红黑树上的元素,当树上结点为6时,降级为链表
static final int UNTREEIFY_THRESHOLD = 6;
//树化阈值,当哈希表中table的大小达到64个后,才允许树化(链表转化为红黑树)
static final int MIN_TREEIFY_CAPACITY = 64;
//Hash表数组
transient Node<K,V>[] table;
transient Set<Map.Entry<K,V>> entrySet;
//HashMap中存储的键值对的数量
transient int size;
//hash表结构修改次数
transient int modCount;
//扩容阈值,当元素超过这个阈值,触发扩容
int threshold;
//负载因子 threshhold=capacity*loadFactor
final float loadFactor;
从上面可以看出,table中链表想要转变为红黑树,需要两个前提条件:table数组的长度达到MIN_TREEIFY_CAPACITY 64 ,链表的长度达到TREEIFY_THRESHOLD 8。
另外默认负载因子为0.75,这个是经过测算给出的,一般不需要我们给定其他的数值
2.HashMap构造方法
//给定创建table数组的大小和给定负载因子
public HashMap(int initialCapacity, float loadFactor) {
// 对initialCapacity进行校验,既不能小于0,也不能大于MAXIMUM_CAPACITY
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 负载因子不能小于0
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
//将给定的负载因子赋值给成员变量
this.loadFactor = loadFactor;
// 将扩容阈值设为比initialCapacity大的2^n数
this.threshold = tableSizeFor(initialCapacity);
}
//只给出table数组的大小,其实也就是调用上面的多参构造,传递默认的负载因子
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//不给定大小和自定义负载因子。这里将负载因子设置为默认值
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
从上面的三个构造方法可以看出,三个方法都将loadFactor进行了初始化。当给定了initialcapacity时,就会通过tableSizeFor来确定threshold扩容阈值的值,否则tableSizeFor默认为0。
注意上面并没有创建table数组,此时table=null ,table的初始化将放在第一次put操作。
另外我们还要看看上面提到的一个重要方法tableSizeFor(initialCapacity) ,它保证了table数组的容量必须是2的整数幂
//将任意一个非负数转化成一个比它大的2^m数 //不小于它的最接近的2的整数幂m,比如给定10得出16,给定25得出32 static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
这个算法设计的非常巧妙,通过位运算实现,优化了效率,且代码比较优美
为什么table数组的大小必须为2的整数幂?
3.put(key,value)
1.为什么高十六位^第十六位
2. 为什么table数组的大小必须为2的整数幂?
答案是使hash值分布得更散列,减少哈希碰撞
public V put(K key, V value) {
//hash(key)扰动函数:让key的hash值的高16位也参与路由运算
return putVal(hash(key), key, value, false, true);
}
//hash扰动,得到的值即为node的hash值
//让hash值更加散列,减小hash冲突
static final int hash(Object key) {
int h;
//让key的hash值与其高十六位进行异或运算
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
putVal() 核心方法
//onlyIfAbsent : 当为true时,表示如果key是相同的,则不添加;false,则表示覆盖。put方法是覆盖添加
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
//tab:引用当前hash的散列表
//p:当前散列表中的元素
//n:表示散列表数组的长度
// i:表示路由寻址后的结果
Node<K,V>[] tab; Node<K,V> p; int n, i;
//在构造方法中我们没有对table数组进行初始化
//延迟初始化(懒加载),第一次使用putval时会初始化hashmap中最消耗内存的散列表
//tab=resize() :对table数组进行初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//通过路由算法成功找到筒位,且为空,我们直接把新结点丢入即可
//路由算法 i=(n-1)&hash
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
//找到的桶不为null,表示发生了hash冲突
//e:node临时元素 k:临时的一个key
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k)))) //该桶位的键值对的key与我们要添加的键值对的key一致,表示后续有替换操作
e = p;
else if (p instanceof TreeNode) //表示该筒位已经被树化,我们需要在树上进行增添
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//桶位既不是对应的键,也不是树,则只有一种可能,就是链表,我们遍历链表,如果链表上有对应的key,则进行替换,如果没有对应的key,则通过尾插法进行增加
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) { //遍历到最后,没有匹配,则使用尾插法
p.next = newNode(hash, key, value, null);
//尾插法过后,判断是否满足树化条件进行树化
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//如果找到了对应的key,则进行替换,退出循环
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//表示你要插入的key在散列表中已经存在了,我们进行value的替换即可
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//表示key不存在,我们需要添加新的,所以结构修改次数+1,并判断是否需要进行resize()扩容
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
- put方法图解过程如下:
- 另外上面的路由算法i = (n - 1) & hash 可以得出为什么table数组的大小为什么是2的n次幂:
假设数组table的长度为8,hash分别为3、7 , i=7&hash
不难发现 7&3=3 7&7=7 其实就是取余运算 ,即 (n - 1) & hash == hash%n,前提是table长度为2的m次幂
我们在看看n为9的情况
可以看到n不是2的m次幂后,两个hash取得的i值都为0,这就发生了哈希碰撞,会导致链化或者树化。
综上:n必须为2的幂次方的原因如下:1.当我们根据key的hash确定其在数组的位置时,如果n为2的幂次方,可以保证数据均匀插入数组,如果n不是2的幂次方,可能数组的一些位置永远不会插入数据,浪费数组的空间,增大hash冲突
2.一般我们会想通过%取余方式来确定位置,但是性能不如&运算,而且当n是2的幂次方时:hash&(length-1)==hash%length
3.HashMap容量为2次幂的原因,就是为了数据的均匀分布,减少hash冲突,毕竟冲突越大,代表数组一个链的长度越大,会降低HashMap性能
4.resize() 扩容机制
final Node<K,V>[] resize() {
// oldTab:引用扩容前的哈希表
Node<K,V>[] oldTab = table;
//扩容前table数组的长度
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//扩容前的扩容阈值
int oldThr = threshold;
// 扩容后,table数组的大小和新的扩容阈值
int newCap, newThr = 0;
// 原来的table长度大于0,表示已经被初始化过了
if (oldCap > 0) {
//表示已经初始化过了,可以进行扩容
//如果oldcap大于了最大容量,则直接返回,不进行扩容
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//将oldcap扩大两倍并检测是否超过最大容量 检测老容量是否大于16(可能new HashMap时给出了初始大小为8)
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
//扩容成功,将扩容阈值增大一倍
newThr = oldThr << 1; // double threshold
}
//new HashMap(initCap,loadFactor)
//new HashMap(initCap)
//new HashMap(map)
//以上三种都会初始化扩容阈值
//oldcap=0,oldthr>0 表示table仍为null,我们将数组的大小赋值为扩容阈值
//实际上是因为table还不有被初始化,所以这里不是真正意义上的扩容
else if (oldThr > 0)
newCap = oldThr;
else //oldcap=0 ,oldThr=0 new HashMap(),此时我们就需要给这些赋上定义好的默认值,table还没有被初始化
{ // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); 默认负载因子*默认容器大小
}
//两种情况 1. oldCap<16 2.oldCap=0,oldThr>0
//通过负载因子*容器大小计算出扩容阈值,并检查阈值是否合法(合法化)
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//更改HashMap的扩容阈值为新的扩容阈值
threshold = newThr;
// 以上都是计算新的数组大小和扩容阈值应该是多少,是数值上的确定
//下面是真实的扩容操作
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
// 将table指向新创建的数组
table = newTab;
// 如果oldtable!=null,表示其中有数据
if (oldTab != null) {
// 遍历出以前table的每一个结点
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
//如果给结点不为null,则接下来判断是单个结点,链表,红黑树
if ((e = oldTab[j]) != null) {
// 将oldtable中的引用置为null,方面jvm gc进行回收
oldTab[j] = null;
if (e.next == null) //表示为单个结点
newTab[e.hash & (newCap - 1)] = e; //根据路由算法重新计算结点在新的数组中的位置,并赋值
else if (e instanceof TreeNode) //表示该结点为红黑树
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // 表示该节点为链表
// 低位链表,存放在扩容之后的数组下标位置,与当前数组的下标位置一致
Node<K,V> loHead = null, loTail = null;
// 高位链表:存放在扩容之后的数组的下标位置为 当前数组下标位置+扩容之前的数组长度
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 存放在低位链
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {//存放在高位链
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 低位链表尾结点的下一位置为空,并将低位放在对应的桶中
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 高位链表尾结点的下一位置为空,并将高位放在对应的桶中
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
5.get(key) 获取key对应的值
public V get(Object key) {
Node<K,V> e;
// hash(key) 因为存入桶位的时候,我们对key进行了hash
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) { //table不为null ,table的长度>0 ,根据key进行路由算法得到的桶里有数据
if (first.hash == hash &&
((k = first.key) == key || (key != null && key.equals(k))))
return first; //得到的第一个key就是我们要找的
if ((e = first.next) != null) { //可能是链表或红黑树
//通过查询红黑树进行查找
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//通过链表进行查找
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
6.remove(key) 移除散列表中的key
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)//如果删除的是红黑树
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p) //删除的是头结点
tab[index] = node.next;
else //删除的是链表中的结点
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
本文关于HashMap的更多细节和红黑树正在更新中,敬请关注……