java源码系列(3)——HashMap

一.前置知识

  • 数组, 优点:随机访问,查询效率高 ;缺点:数组大小有限,扩容机制消耗性能,增删较慢。

  • 链表,优点:增删较快;缺点:不支持随机索引,查找需要遍历链表。

  • 散列表(哈希)整合以上两种结构的优势:随即索引,动态扩容

hash核心理论:将任意长度的输入,通过Hash算法变成固定长度的输出。这个映射的规则就是对应的Hash算法,而原始数据映射后的二进制串就是哈希值。

Hash特点:

  1. 从hash值不能反向推到出原始的数据
  2. 输入数据的微小变化会得到不同的hash值,相同的数据得到相同的hash值
  3. hash冲突的概率要小(hash冲突:两个不同的数据通过hash算法映射成相同的hash值,我们应该避免)
  4. 哈希算法的执行效率要高效,长的文本也能快速得到哈希值

二.HashMap原理

1.继承体系结构在这里插入图片描述

2.HashMap底层结构

jdk1.8 的HashMap底层由数组(table)+链表+红黑树构成。当我们new HashMap()时,不会对table数组进行初始化,只会对初始大小initialCapacity和扩容阈值threshold,此时table=null。
当执行第一次put方法时,采用懒加载,table根据initialCapacity进行数组大小初始化。
数组中每个位置称为一个桶位,桶位中存放我们的Node结点。在我们使用put向散列表中添加数据时,我们会根据key对象的哈希值通过哈希扰动函数得到一个新的哈希值存入Node结点中,我们先看看HashMap中是怎么定义Node结点的

 static class Node<K,V> implements Map.Entry<K,V> {
 		//key通过哈希扰动后获得的哈希值
        final int hash;
        //key
        final K key;
        //value
        V value;
        //当转化为链表或红黑树时,当前结点的下一个结点
        Node<K,V> next;
		
		…………其他方法不展示
  }

得到了hash值后,底层通过路由算法 i = (n - 1) & hash 得到该key对应存放在散列表中 ,如果对应的桶中没有元素,则直接将node放入桶中,若桶中有元素,则发生了哈希碰撞,我们需要判断此时的结点是链表还是红黑树,并将node结点加入到链表(链化)或是红黑树(树化)中。
当然put加入元素后,我们还要考虑是否超出了扩容阈值,超出则要进行扩容。
具体请看后面的源码解析
在这里插入图片描述

三.HashMap底层源码

重点概要:

  • HashMap成员变量

1.HashMap中重要的常量与成员变量

 private static final long serialVersionUID = 362498820763181265L;

    //默认缺省table大小
    //当创建HashMap时没有指定table大小时,用默认常量16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    //table数组的最大长度2^30
    static final int MAXIMUM_CAPACITY = 1 << 30;

   //缺省负载因子:默认的负载因子loadFactor
    //根据负载因子判断何时进行扩容较为合理
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

   //树化阈值,当链表长度达到8时,转化为红黑树
    static final int TREEIFY_THRESHOLD = 8;

    //树降级阈值,删除红黑树上的元素,当树上结点为6时,降级为链表
    static final int UNTREEIFY_THRESHOLD = 6;

    //树化阈值,当哈希表中table的大小达到64个后,才允许树化(链表转化为红黑树)
    static final int MIN_TREEIFY_CAPACITY = 64;

	
    //Hash表数组
    transient Node<K,V>[] table;

    
    transient Set<Map.Entry<K,V>> entrySet;

   //HashMap中存储的键值对的数量
    transient int size;

    //hash表结构修改次数
    transient int modCount;

   //扩容阈值,当元素超过这个阈值,触发扩容
    int threshold;

    //负载因子  threshhold=capacity*loadFactor
    final float loadFactor;

从上面可以看出,table中链表想要转变为红黑树,需要两个前提条件:table数组的长度达到MIN_TREEIFY_CAPACITY 64 ,链表的长度达到TREEIFY_THRESHOLD 8。

另外默认负载因子为0.75,这个是经过测算给出的,一般不需要我们给定其他的数值

2.HashMap构造方法

//给定创建table数组的大小和给定负载因子
public HashMap(int initialCapacity, float loadFactor) {

        // 对initialCapacity进行校验,既不能小于0,也不能大于MAXIMUM_CAPACITY
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;

        // 负载因子不能小于0
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                              loadFactor);
		//将给定的负载因子赋值给成员变量
        this.loadFactor = loadFactor;
        // 将扩容阈值设为比initialCapacity大的2^n数
        this.threshold = tableSizeFor(initialCapacity);
    }

    //只给出table数组的大小,其实也就是调用上面的多参构造,传递默认的负载因子
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

	//不给定大小和自定义负载因子。这里将负载因子设置为默认值
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

从上面的三个构造方法可以看出,三个方法都将loadFactor进行了初始化。当给定了initialcapacity时,就会通过tableSizeFor来确定threshold扩容阈值的值,否则tableSizeFor默认为0。

注意上面并没有创建table数组,此时table=null ,table的初始化将放在第一次put操作。

另外我们还要看看上面提到的一个重要方法tableSizeFor(initialCapacity) ,它保证了table数组的容量必须是2的整数幂

//将任意一个非负数转化成一个比它大的2^m数
//不小于它的最接近的2的整数幂m,比如给定10得出16,给定25得出32
   static final int tableSizeFor(int cap) {
       int n = cap - 1;
       n |= n >>> 1;
       n |= n >>> 2;
       n |= n >>> 4;
       n |= n >>> 8;
       n |= n >>> 16;
       return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
   }

这个算法设计的非常巧妙,通过位运算实现,优化了效率,且代码比较优美
为什么table数组的大小必须为2的整数幂?

3.put(key,value)

1.为什么高十六位^第十六位
2. 为什么table数组的大小必须为2的整数幂?
答案是使hash值分布得更散列,减少哈希碰撞

public V put(K key, V value) {
        //hash(key)扰动函数:让key的hash值的高16位也参与路由运算
        return putVal(hash(key), key, value, false, true);
}

 //hash扰动,得到的值即为node的hash值
    //让hash值更加散列,减小hash冲突
    static final int hash(Object key) {
        int h;
     
       //让key的hash值与其高十六位进行异或运算
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); 
    }

putVal() 核心方法

//onlyIfAbsent : 当为true时,表示如果key是相同的,则不添加;false,则表示覆盖。put方法是覆盖添加
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {

        //tab:引用当前hash的散列表
        //p:当前散列表中的元素
        //n:表示散列表数组的长度
        // i:表示路由寻址后的结果
        Node<K,V>[] tab; Node<K,V> p; int n, i;

        //在构造方法中我们没有对table数组进行初始化
        //延迟初始化(懒加载),第一次使用putval时会初始化hashmap中最消耗内存的散列表
        //tab=resize() :对table数组进行初始化    
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;

        //通过路由算法成功找到筒位,且为空,我们直接把新结点丢入即可
        //路由算法 i=(n-1)&hash
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            //找到的桶不为null,表示发生了hash冲突
            //e:node临时元素   k:临时的一个key
            Node<K,V> e; K k;


            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))  //该桶位的键值对的key与我们要添加的键值对的key一致,表示后续有替换操作
                e = p;
            else if (p instanceof TreeNode) //表示该筒位已经被树化,我们需要在树上进行增添
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //桶位既不是对应的键,也不是树,则只有一种可能,就是链表,我们遍历链表,如果链表上有对应的key,则进行替换,如果没有对应的key,则通过尾插法进行增加
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) { //遍历到最后,没有匹配,则使用尾插法
                        p.next = newNode(hash, key, value, null);

                        //尾插法过后,判断是否满足树化条件进行树化
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }

                    //如果找到了对应的key,则进行替换,退出循环
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //表示你要插入的key在散列表中已经存在了,我们进行value的替换即可
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        //表示key不存在,我们需要添加新的,所以结构修改次数+1,并判断是否需要进行resize()扩容
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
  • put方法图解过程如下:
    在这里插入图片描述
  • 另外上面的路由算法i = (n - 1) & hash 可以得出为什么table数组的大小为什么是2的n次幂:

假设数组table的长度为8,hash分别为3、7 , i=7&hash
在这里插入图片描述

不难发现 7&3=3 7&7=7 其实就是取余运算 ,即 (n - 1) & hash == hash%n,前提是table长度为2的m次幂

我们在看看n为9的情况
在这里插入图片描述
可以看到n不是2的m次幂后,两个hash取得的i值都为0,这就发生了哈希碰撞,会导致链化或者树化。
综上:n必须为2的幂次方的原因如下:

1.当我们根据key的hash确定其在数组的位置时,如果n为2的幂次方,可以保证数据均匀插入数组,如果n不是2的幂次方,可能数组的一些位置永远不会插入数据,浪费数组的空间,增大hash冲突
2.一般我们会想通过%取余方式来确定位置,但是性能不如&运算,而且当n是2的幂次方时:hash&(length-1)==hash%length
3.HashMap容量为2次幂的原因,就是为了数据的均匀分布,减少hash冲突,毕竟冲突越大,代表数组一个链的长度越大,会降低HashMap性能

4.resize() 扩容机制

final Node<K,V>[] resize() {
        // oldTab:引用扩容前的哈希表
        Node<K,V>[] oldTab = table;
        //扩容前table数组的长度
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //扩容前的扩容阈值
        int oldThr = threshold;
        // 扩容后,table数组的大小和新的扩容阈值
        int newCap, newThr = 0;
        // 原来的table长度大于0,表示已经被初始化过了
        if (oldCap > 0) {
			//表示已经初始化过了,可以进行扩容
            //如果oldcap大于了最大容量,则直接返回,不进行扩容
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //将oldcap扩大两倍并检测是否超过最大容量    检测老容量是否大于16(可能new HashMap时给出了初始大小为8)
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                //扩容成功,将扩容阈值增大一倍
                newThr = oldThr << 1; // double threshold
        }
        //new HashMap(initCap,loadFactor)
        //new HashMap(initCap)
        //new HashMap(map)
        //以上三种都会初始化扩容阈值
        //oldcap=0,oldthr>0   表示table仍为null,我们将数组的大小赋值为扩容阈值
        //实际上是因为table还不有被初始化,所以这里不是真正意义上的扩容
        else if (oldThr > 0) 
            newCap = oldThr;
        else //oldcap=0 ,oldThr=0  new HashMap(),此时我们就需要给这些赋上定义好的默认值,table还没有被初始化
        {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); 默认负载因子*默认容器大小
        }


        //两种情况  1. oldCap<16     2.oldCap=0,oldThr>0
        //通过负载因子*容器大小计算出扩容阈值,并检查阈值是否合法(合法化)
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        //更改HashMap的扩容阈值为新的扩容阈值
        threshold = newThr;

        // 以上都是计算新的数组大小和扩容阈值应该是多少,是数值上的确定
        //下面是真实的扩容操作
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];

        // 将table指向新创建的数组    
        table = newTab;
        // 如果oldtable!=null,表示其中有数据
        if (oldTab != null) {
            // 遍历出以前table的每一个结点
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                //如果给结点不为null,则接下来判断是单个结点,链表,红黑树
                if ((e = oldTab[j]) != null) {

                    // 将oldtable中的引用置为null,方面jvm gc进行回收
                    oldTab[j] = null;


                    if (e.next == null) //表示为单个结点
                        newTab[e.hash & (newCap - 1)] = e;  //根据路由算法重新计算结点在新的数组中的位置,并赋值
                    else if (e instanceof TreeNode) //表示该结点为红黑树
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // 表示该节点为链表

                        // 低位链表,存放在扩容之后的数组下标位置,与当前数组的下标位置一致
                        Node<K,V> loHead = null, loTail = null;
                        // 高位链表:存放在扩容之后的数组的下标位置为 当前数组下标位置+扩容之前的数组长度
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;

                            // 存放在低位链
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {//存放在高位链
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);

                        // 低位链表尾结点的下一位置为空,并将低位放在对应的桶中
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        // 高位链表尾结点的下一位置为空,并将高位放在对应的桶中
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

5.get(key) 获取key对应的值

 public V get(Object key) {
        Node<K,V> e;
        // hash(key) 因为存入桶位的时候,我们对key进行了hash
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {  //table不为null ,table的长度>0 ,根据key进行路由算法得到的桶里有数据


            if (first.hash == hash && 
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;  //得到的第一个key就是我们要找的


            if ((e = first.next) != null) { //可能是链表或红黑树

                //通过查询红黑树进行查找
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);

                //通过链表进行查找
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

6.remove(key) 移除散列表中的key

public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

   
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)//如果删除的是红黑树
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p) //删除的是头结点
                    tab[index] = node.next;
                else //删除的是链表中的结点
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }


本文关于HashMap的更多细节和红黑树正在更新中,敬请关注……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值