世界新冠疫情数countrydata.csv 表,实战分析

本文介绍了如何在Hadoop环境下使用Hive和Spark进行全球疫情数据的统计分析,包括统计每个国家的累计确诊人数、全球总感染人数、各大洲每日新增和累计确诊最多的国家,以及HBase数据表的创建和数据映射。
摘要由CSDN通过智能技术生成

一、环境要求

Hadoop+Hive+Spark+HBase 开发环境。

四、功能要求

1.数据准备  请在 HDFS 中创建目录/app/data/exam,并将 countrydata.csv 传到该目录。

2.在 Spark-Shell 中,加载 HDFS 文件系统 countrydata.csv 文件,并使用 RDD 完成以下 统计计算。

[root@gree2 exam]# hdfs dfs -put ./countrydata.csv /app/data/exam


scala> val countryRdd=sc.textFile("/app/data/exam/countrydata.csv")

①统计每个国家在数据截止统计时的累计确诊人数。

scala> countryRdd.map(x=>x.split(",")).map(x=>(x(4),x(1).toInt)).reduceByKey((x,y)=>if(x>y) x else y).collect.foreach(println)

②统计全世界在数据截止统计时的总感染人数。

scala> countryRdd.map(x=>x.split(",")).map(x=>(x(4),x(1).toInt)).reduceByKey((x,y)=>if(x>y) x else y).reduce
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值