一、实验目的
本实验旨在进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识,理解 Fisher 准则方法确定最佳线性分界面方法的原理,以及 Lagrande 乘子求解的原理。
二、实验原理
线性判断函数的一般形式可表示为
其中
根据Fisher选择投影方向w的原则,即使原样本向量在该方向的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向w的准则函数为
其中,、
分别是一维投影上两类样本的均值,
、
分别是一维投影上两类样本的类内离散度,可以由下面两个公式计算得到。
其中是d维样本向量空间第i类的均值向量,
是第i类的类内离散度矩阵。
使得为最大值的w就是要求的最佳投影向量
,其表达式如下
式(3.5)是使用Fisher准则,求最佳法线向量的解,利用求得的对样本向量进行如式(3.1)所示变换。在式(3.5)中,
是d维样本向量空间两类均值向量的差,结果是一个d维向量;
是
的逆矩阵,其中
是d维样本向量空间总的类内离散度矩阵,是一个
维矩阵,
也是
维矩阵,这样式(3.5)计算得到的
也是一个d维的向量。类内总离散度矩阵
,其中:
在、
已知时,判别函数式(3.1)中的确定方法如下,
这里阈值点。式(3.7)是根据投影后两类样本均值之间的平均距离来确定阈值点的,式(3.8)既考虑了投影后样本均值之间的平均距离,又考虑了两类样本的容量大小作为阈值位置的偏移修正。式(3.9)使用了先验概率
,可以使分类误差尽可能小。
当阈值点确定后,可按如下规则进行分类:
Fisher准则进行分类器的设计步骤:
- 选择训练样本向量根据Fisher准则,计算得到最佳投影方向
;
- 对输入的训练样本向量进行线性映射,并设定阈值点
;
- 计算未知样本的投影,根据式(3.9)对样本的类别进行判断,实现分类。
三、实验原始记录
基于Fisher准则线性分类器设计-深度学习文档类资源-CSDN文库https://download.csdn.net/download/qq_56870342/87250862
四、实验结果及分析
根据最佳投射方向的计算公式,求解出
= (-0.36,0.91,-0.22)。在该方向上,原样本向量在其上的投影既能类间分布尽可能分开,又能使类内样本投影尽可能密集。
根据已知阈值点时所属类别的判断方法,可以计算出下表所示结果。其在最佳投射方向上的投影如上图所示。
x | 1 | 1.2 | 2 | 1.2 | 0.23 |
y | 1.5 | 1 | 0.9 | 1.5 | 2.33 |
z | 0.6 | 0.55 | 0.68 | 0.89 | 1.43 |
所属类别 | 1 | 2 | 2 | 2 | 1 |
w的比例因子对Fisher判别函数没有影响。