力扣周赛 100341. 网格图操作后的最大分数

. - 力扣(LeetCode)

动规+贪心:

        首先想到的是一列的价值贡献的情况只有前后都确定后才确定,因此最初不贪心的情况下,想到用 f[i][j][k] 前 i 列在第 i 列涂 j 个,i - 1 涂 k 个的最优解,然后枚举 i + 1 列的涂抹情况向后更新,明显是o(n^4)比较极限。

        于是题解思路是,凹字形并且中间不为0的情况是不存在的因此舍弃这种情况,跟新就有了单调性,最优解只会是  减增减,增增增, 减减减,定义状态f[i][j][0/1]为第i列涂j个且趋势为增/减,凹字形且中间为0的情况直接让i + 2从i处更新即可。

class Solution {
public:
    long long maximumScore(vector<vector<int>> &grid) {


        int n = grid[0].size();
        if (n == 1) return 0;
        long long ans = 0;

        vector<vector<long long>> sum(n + 1, vector<long long>(n + 1));
        for (int j = 1; j <= n; j++) {
            for (int i = 1; i <= n; i++) {
                sum[i][j] = grid[i - 1][j - 1];
                sum[i][j] += sum[i - 1][j];
            }
        }//每列做前缀处理

        vector<vector<vector<long long>>> f(n + 1, vector<vector<long long>>(n + 1, vector<long long>(2)));
        for (int i = 1; i <= n; i++) {
            for (int j = 0; j <= n; j++) {

                if (i + 2 <= n) {
                    for (int k = 0; k <= n; k++) {
                        f[i + 2][k][1] = max(f[i + 2][k][1], max(f[i][j][0], f[i][j][1]) + sum[max(k, j)][i + 1]);//中间为0的情况

                    }
                }

                if (i + 1 <= n) {
                    for (int k = j; k <= n; k++) {
                        f[i + 1][k][1] = max(f[i + 1][k][1], f[i][j][1] + sum[k][i] - sum[j][i]);
                    }
                    for (int k = j; k >= 0; k--) {
                        f[i + 1][k][0] = max(f[i + 1][k][0],
                                             max(f[i][j][1], f[i][j][0]) + sum[j][i + 1] - sum[k][i + 1]);//普通增减情况
                    }
                }

                ans = max({ans, f[i][j][0], f[i][j][1]});
            }
        }

        return ans;
    }

} zz;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值