动规+贪心:
首先想到的是一列的价值贡献的情况只有前后都确定后才确定,因此最初不贪心的情况下,想到用 f[i][j][k] 前 i 列在第 i 列涂 j 个,i - 1 涂 k 个的最优解,然后枚举 i + 1 列的涂抹情况向后更新,明显是o(n^4)比较极限。
于是题解思路是,凹字形并且中间不为0的情况是不存在的因此舍弃这种情况,跟新就有了单调性,最优解只会是 减增减,增增增, 减减减,定义状态f[i][j][0/1]为第i列涂j个且趋势为增/减,凹字形且中间为0的情况直接让i + 2从i处更新即可。
class Solution {
public:
long long maximumScore(vector<vector<int>> &grid) {
int n = grid[0].size();
if (n == 1) return 0;
long long ans = 0;
vector<vector<long long>> sum(n + 1, vector<long long>(n + 1));
for (int j = 1; j <= n; j++) {
for (int i = 1; i <= n; i++) {
sum[i][j] = grid[i - 1][j - 1];
sum[i][j] += sum[i - 1][j];
}
}//每列做前缀处理
vector<vector<vector<long long>>> f(n + 1, vector<vector<long long>>(n + 1, vector<long long>(2)));
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= n; j++) {
if (i + 2 <= n) {
for (int k = 0; k <= n; k++) {
f[i + 2][k][1] = max(f[i + 2][k][1], max(f[i][j][0], f[i][j][1]) + sum[max(k, j)][i + 1]);//中间为0的情况
}
}
if (i + 1 <= n) {
for (int k = j; k <= n; k++) {
f[i + 1][k][1] = max(f[i + 1][k][1], f[i][j][1] + sum[k][i] - sum[j][i]);
}
for (int k = j; k >= 0; k--) {
f[i + 1][k][0] = max(f[i + 1][k][0],
max(f[i][j][1], f[i][j][0]) + sum[j][i + 1] - sum[k][i + 1]);//普通增减情况
}
}
ans = max({ans, f[i][j][0], f[i][j][1]});
}
}
return ans;
}
} zz;