#温馨提示:此文章使用的是MD编辑器,在小程序上查看可能会出现乱码,敬请谅解
题目介绍
题目背景
NOIP2016 普及组 T1
题目描述
本题难度:入门
算法标签:模拟
P 老师需要去商店买 n n n 支铅笔作为小朋友们参加 NOIP 的礼物。她发现商店一共有 3 3 3 种包装的铅笔,不同包装内的铅笔数量有可能不同,价格也有可能不同。为了公平起 见,P 老师决定只买同一种包装的铅笔。
商店不允许将铅笔的包装拆开,因此 P 老师可能需要购买超过 n n n 支铅笔才够给小朋友们发礼物。
现在 P 老师想知道,在商店每种包装的数量都足够的情况下,要买够至少 n n n 支铅笔最少需要花费多少钱。
输入格式
第一行包含一个正整数 n n n,表示需要的铅笔数量。
接下来三行,每行用 2 2 2 个正整数描述一种包装的铅笔:其中第 1 1 1 个整数表示这种包装内铅笔的数量,第 2 2 2 个整数表示这种包装的价格。
保证所有的 7 7 7 个数都是不超过 10000 10000 10000 的正整数。
输出格式
1 1 1 个整数,表示 P 老师最少需要花费的钱。
样例 #1
样例输入 #1
57 \texttt{57} 57
2 2 \texttt{2 2} 2 2
50 30 \texttt{50 30} 50 30
30 27 \texttt{30 27} 30 27
样例输出 #1
54 \texttt{54} 54
样例 #2
样例输入 #2
9998 \texttt{9998} 9998
128 233 \texttt{128 233} 128 233
128 2333 \texttt{128 2333} 128 2333
128 666 \texttt{128 666} 128 666
样例输出 #2
18407 \texttt{18407} 18407
样例 #3
样例输入 #3
9999 \texttt{9999} 9999
101 1111 \texttt{101 1111} 101 1111
1 9999 \texttt{1 9999} 1 9999
1111 9999 \texttt{1111 9999} 1111 9999
样例输出 #3
89991 \texttt{89991} 89991
提示
铅笔的三种包装分别是:
- 2 2 2 支装,价格为 2 2 2;
- 50 50 50 支装,价格为 30 30 30;
- 30 30 30 支装,价格为 27 27 27。
P 老师需要购买至少 57 57 57 支铅笔。
如果她选择购买第一种包装,那么她需要购买 29 29 29 份,共计 2 × 29 = 58 2 \times 29 = 58 2×29=58 支,需要花费的钱为 2 × 29 = 58 2 \times 29 = 58 2×29=58。
实际上,P 老师会选择购买第三种包装,这样需要买 2 2 2 份。虽然最后买到的铅笔数量更多了,为 30 × 2 = 60 30 \times 2 = 60 30×2=60 支,但花费却减少为 27 × 2 = 54 27 \times 2 = 54 27×2=54,比第一种少。
对于第二种包装,虽然每支铅笔的价格是最低的,但要够发必须买 2 2 2 份,实际的花费达到了 30 × 2 = 60 30 \times 2 = 60 30×2=60,因此 P 老师也不会选择。
所以最后输出的答案是 54 54 54。
数据范围
保证所有的 7 7 7 个数都是不超过 10000 10000 10000 的正整数。
子任务
子任务会给出部分测试数据的特点。如果你在解决题目中遇到了困难,可以尝试只解决一部分测试数据。
每个测试点的数据规模及特点如下表:
上表中“整倍数”的意义为:若为 K K K,表示对应数据所需要的铅笔数量 n n n —定是每种包装铅笔数量的整倍数(这意味着一定可以不用多买铅笔)。
于 2022 年 12 月 23 日新加 Hack 数据三组。
题解代码及思路
本题是一道模拟题,我们分别模拟 3 3 3 种情况的价格,最后比较大小,选出最小的即可。
注意:
C++中的/
运算符会向下取整,所以在计算每种铅笔应买多少盒时,除不尽的要 + 1 +1 +1。
还有千万别把min
写成max
(应该只有我一个人写错吧)
AC代码如下
#include <bits/stdc++.h>
using namespace std;
int main() {
int n; // 需要的铅笔数量
cin >> n;
int a1, a2,b1, b2,c1, c2; // 每种包装的铅笔数量和价格
cin >> a1 >> a2;
cin >> b1 >> b2;
cin >> c1 >> c2;
// 计算购买每种包装满足至少 n 支铅笔所需的最小花费
int ap = (n / a1 + ((n % a1 != 0) ? 1 : 0)) * a2; // 第一种包装的最小总花费
int bp = (n / b1 + ((n % b1 != 0) ? 1 : 0)) * b2; // 第二种包装的最小总花费
int cp = (n / c1 + ((n % c1 != 0) ? 1 : 0)) * c2; // 第三种包装的最小总花费
int ans = min(ap, min(bp, cp)); // 找出最小花费
cout << ans << endl; // 输出最少需要花费的钱数
return 0;
}