信安数学基础

1.有限域

1.1群
 

群G,有时记为{G,·},是定义了一个二元运算的集合,这个二元运算可表示为·,G中的每一个序偶(a,b)通过运算生成G中的元素(a·b),并满足以下公理:

(A1)封闭性 如果a和b都属于G,则a·b也属于G。

(A2)结合律 对于G中任意元素a、b、c,都有a·(b·c)=(a·b)·c成立。

(A3)单位元 G中存在一个元素e,对于G中任意元素a,都有a·e=e·a=a成立。

(A4)逆元 对于G中任意元素a,Guuuuuuuu中都存在一个元素a',使得下式成立a·a'=a'·a=e

1.1.1交换群

一个群如果满足以下条件,则成为交换群:

  (A5)交换律: 对于G中任意的元素a、b,都有a·b=b·a成立。

1.1.2循环群

  如果群中的每一个元素都是一个固定元素a(a\inG)的幂a^{k}(k为整数),则称群G是一个循环群。

1.2环

环R,有时记为{R,+,×},是一个有两个二元运算的集合,这两个二元运算分别成为加法和乘法,且对于R中的任意元素a、b、c满足以下公理:

(A1-A5) R关于加法是一个交换群;也就是说R满足从A1到A5的所有规则。对于此种情况下的加法群,我们用0表示其单位元,-a表示a的逆元。

(M1)乘法的封闭性 如果a和b都属于R,则ab也属于R。

(M2)乘法的结合律 对于R中的任意元素a、b、c,有a(bc)=(ab)c成立。

(M3)分配律 对于R中的任意元素a、b、c,下面两个式子总成立:

a(b+c)=ab+ac                 (a+b)c=ac+bc

1.2.1交换环

环如果还满足以下条件,则被称为交换环

(M4)乘法的交换律 对于R中任意的元素a、b,有ab=bc成立

1.2.2整环

满足以下公理的交换环:

(M5)乘法单位元 在R中存在元素1,使得对于R中的任意元素a,有a1=1a=a成立。

(M6)无零因子 如果有R中元素a、b,且ab=0,则必有a=0或b=0.

1.3域

域F,有时记为{F,+,×},是有两个二元运算的集合,这两个二元运算分别称为加法和乘法,且对于F中的任意元素a、b、c满足以下公理:

(A1-M6)F是一个整环:也就是说F满足A1到A5以及M1到M6的所有原则。

(M7)乘法逆元 对于F中的任意元素a(除0以外),F中都存在一个元素a^{^{-1}}使得aa^{^{-1}}=(a^{^{-1}})a=1成立。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值