医学图像学习
文章平均质量分 78
F_-_-_
持续学习!
展开
-
【2022】较为全面的AlexNet总结
经典的上下两层结构,目的是用多GPU并行处理。原创 2022-11-04 19:45:18 · 1625 阅读 · 0 评论 -
Pytorch实现Warm up+余弦退火,亲测有效
由于刚开始训练时,模型的权重(weights)是随机初始化的,此时若选择一个较大的学习率,可能带来模型的不稳定(振荡),选择Warmup预热学习率的方式,可以使得开始训练的几个epoches或者一些steps内学习率较小,在预热的小学习率下,模型可以慢慢趋于稳定,等模型相对稳定后再选择预先设置的学习率进行训练,使得模型收敛速度变得更快,模型效果更佳。余弦函数中随着x的增加余弦值首先缓慢下降,然后加速下降,再次缓慢下降。这种下降模式能和学习率配合,以一种十分有效的计算方式来产生很好的效果。原创 2022-10-15 15:17:49 · 3505 阅读 · 3 评论 -
【基】医学CT图像-‘.dcm‘图像读取/处理/窗位窗宽修改/保存
详细的解释了医学.dcm图像的处理原创 2022-10-13 11:33:51 · 3636 阅读 · 0 评论