自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(59)
  • 收藏
  • 关注

原创 DeepSeek技术解析:MoE架构实现与代码实战

通过代码实践可以看出,DeepSeek的技术优势源于算法创新与工程优化的深度结合。其MoE架构在保持模型性能的同时,通过动态路由、稀疏计算等技术突破了大模型落地的算力瓶颈,为行业智能化转型提供了可复用的技术范式。未来应用deepseek将更加广泛。

2025-03-15 17:22:07 477

原创 深度求索:DeepSeek的AI技术革新与行业突破

作为中国AI领域的标杆企业,DeepSeek通过持续的技术创新与行业深耕,正在重新定义人工智能的价值边界。其技术体系不仅体现了对前沿研究的深刻洞察,更展现了将复杂技术转化为产业价值的强大能力。在通向AGI的征途中,DeepSeek的技术演进路径或将为全球AI发展提供重要参考。

2025-03-14 20:29:49 458

原创 DeepSeek技术解析:MoE架构实现与代码实战

通过代码实践可以看出,DeepSeek的技术优势源于算法创新与工程优化的深度结合。其MoE架构在保持模型性能的同时,通过动态路由、稀疏计算等技术突破了大模型落地的算力瓶颈,为行业智能化转型提供了可复用的技术范式。

2025-03-14 20:29:03 482

原创 AI视频生成工具清单(附网址与免费说明)

(注:各平台免费政策可能变动,使用前请以官网最新说明为准)

2025-03-08 14:40:51 892

原创 如何正确使用DeepSeek?这份价值百万的高效操作指南请收好(5000字深度解析)

当你能熟练运用"/debug --level=expert"定位代码深层次漏洞,当你可以用自然语言指挥AI生成三维分子模型,当你的研究效率实现指数级提升——这时你会明白,DeepSeek不是替代人类的工具,而是拓展认知边疆的"外接大脑"。记住,真正的高手从不在提示框里写"帮我",而是说"我们一起"。

2025-03-08 14:19:34 709

原创 免费AI图片生成工具推荐

如果需要特定主题的图片提示词(如学术、科技、教育相关),可以告诉我具体需求,我将为您定制专属的AI绘画描述模板!“/imagine prompt: 水墨风格毕业典礼场景,凤凰盘旋在学术帽上方 --v 5.2”添加"Unreal Engine 5渲染"或"Octane Render"提升质感。“赛博朋克风格的书桌上摆放着发光论文稿,窗外是未来都市夜景,4K超现实细节”(需Discord账号)

2025-03-08 14:14:50 236 1

原创 论文查重免费网站大全:学生党必藏的10+工具(附真实测评)

以下是一篇关于免费论文查重网站的详细总结,涵盖国内外常用平台及其特点(附官网链接):最后建议:(本文持续更新,收藏备用防走失!)

2025-03-08 14:13:47 1042

原创 从选题到答辩:本科毕业设计的全流程生存指南(8000字深度解析)

当打印店老板第5次帮你调整页边距时,当答辩秘书宣布下一位陈述者时,当图书馆闭馆音乐第37次响起时——这些鲜活的细节终将凝结成学术成长的琥珀。本科毕业设计就像学术界的《出埃及记》,重要的不是抵达应许之地,而是在穿越红海的过程中,完成从知识消费者到知识生产者的蜕变。谨以此文,献给所有在实验室通宵达旦、在电脑前抓狂崩溃、在答辩室手心出汗的学术新兵们。你们的征途,是星辰大海的起点。

2025-03-08 13:52:37 501

原创 阿里云操作系统(AliOS)

阿里云操作系统为我们提供了试用时长,在免费额度以及试用有效期内,您可以调整以下配置:首先是个人版然后是企业版介绍完基本情况,下面让我们进入实操,如何开通云服务器ECS。

2025-03-08 13:26:36 886

原创 Deesek:新一代数据处理与分析框架实战指南

在大数据时代,高效处理和分析海量数据是企业和开发者面临的核心挑战。传统工具如Pandas、Spark等虽功能强大,但在实时性、易用性或性能上仍有提升空间。Deesek(假设名称)作为一款新兴的开源数据处理框架,以轻量级、高并发和低延迟为设计目标,正在成为开发者的新宠。本文将深入解析Deesek的核心功能,并结合代码示例展示其应用场景。Deesek基于纯Python/C++混合开发,核心代码库仅3MB,无需复杂依赖,可快速集成到现有项目中。2. 高性能计算通过零拷贝内存共享和并行计算优化,Deesek在处

2025-02-15 21:14:01 669

原创 在蓝耘平台使用4090显卡跑一下深度学习算法-教学文章

蓝耘平台是一个专注于企业级数据管理和分析的工具,旨在帮助企业高效处理、存储和分析大规模数据,以支持业务决策和优化运营。蓝耘平台通过强大的数据集成、分析、安全和管理功能,帮助企业提升数据处理效率,优化业务流程,并支持数据驱动的决策制定。其云原生架构和智能化工具使其成为现代企业数据管理的理想选择。蓝云平台包含许多的市场,包括现在最流行的deekseek,还有许多显卡,例如4090,3090等等高级显卡提供我们让我们选择最合适的显卡来完成我们的任务。房屋面积(平方英尺)卧室数量。

2025-02-15 21:09:33 870

原创 使用cursor完成飞机大战

在这篇文章中,我们将使用 Pygame 库创建一个简单的经典射击游戏——《飞机大战》。该游戏具有多个功能,包括玩家飞机、敌机、子弹、道具、Boss 战斗等元素。游戏逻辑相对简单,但却能为新手提供良好的学习案例,帮助理解如何使用 Pygame 开发2D游戏。本文将详细讲解游戏的各个部分,包括玩家控制、敌人生成、碰撞检测、Boss 机制以及游戏中的道具系统。通过 Pygame,我们可以轻松地制作一个包含玩家飞机、敌机、子弹、道具以及 Boss 战斗的射击游戏。

2025-01-03 17:03:15 718

原创 # 用 HTML、CSS 和 JavaScript 构建扫雷游戏 扫雷是一款经典的益智游戏,许多人都玩过。在这篇文章中,我将带你一起使用 HTML、CSS 和 JavaScript 来实现一个简单的

恭喜你!你已经成功地用 HTML、CSS 和 JavaScript 构建了一个扫雷游戏。现在你可以根据自己的需求进一步自定义游戏,比如添加不同的难度、动画效果或适应不同屏幕尺寸的响应式设计。希望这篇教程对你有帮助,祝你编码愉快!🎉。

2025-01-03 17:02:38 382

原创 # 用 HTML、CSS 和 JavaScript 构建扫雷游戏 扫雷是一款经典的益智游戏,许多人都玩过。在这篇文章中,我将带你一起使用 HTML、CSS 和 JavaScript 来实现一个简单的

恭喜你!你已经成功地用 HTML、CSS 和 JavaScript 构建了一个扫雷游戏。现在你可以根据自己的需求进一步自定义游戏,比如添加不同的难度、动画效果或适应不同屏幕尺寸的响应式设计。希望这篇教程对你有帮助,祝你编码愉快!🎉。

2024-12-29 13:40:40 332

原创 MNER多模态实体识别论文介绍,有关大模型和chatgpt

最近的一篇论文**《Prompting ChatGPT in MNER: Enhanced Multimodal Named Entity Recognition with Auxiliary Refined Knowledge》**给出了答案:通过提示(prompting)ChatGPT生成辅助精炼知识(ARK),显著提升了MNER的性能。通过精心设计的提示,ChatGPT能够在多模态数据中生成高质量的辅助知识,极大提升了MNER任务的性能。传统的NER任务依赖纯文本,但现实生活中,信息往往是多模态的。

2024-12-29 13:10:30 1419

原创 使用Cursor实现五子棋项目

基础功能绘制15x15棋盘。黑白棋子交替下棋。检测五子连珠,判断胜负。显示当前玩家。拓展功能悔棋:支持玩家撤销最后一步操作。重新开始:清空棋盘,重新开始游戏。游戏模式切换:支持双人对战和人机对战。智能AI简单的AI逻辑:AI根据评分评估最佳落子点。Tkinter图形界面设计:包括CanvasFrameButton等组件。面向对象编程:通过类结构实现模块化代码。AI逻辑设计:简单的评分机制评估落子点。实现更复杂的AI算法(如Alpha-Beta剪枝)。

2024-12-23 11:10:15 732

原创 使用Cursor简单一句话实现一个小项目,今天是实现计算器!!!!

1.Ctrl+i调出对话窗口2. 输入这段提示语:帮我写一个计算器,要求有计算器的全部功能,且计算器要美观大方,要求输入运算符号要在显示器中显示出来。3. 运行py文件本项目的目标是创建一个简洁、美观、功能齐全的计算器程序,能够进行以下操作:设计计算器界面实现功能逻辑优化用户体验以下是实现计算器的完整代码:代码功能概述界面设计核心功能按钮响应通过这个项目,你可以学到:如果有更多想法,可以进一步扩展功能,例如添加高级数学操作(如平方、开方)或优化界面设计。希望这篇文章对你有所帮助,快来试试吧!

2024-12-23 11:00:37 439

原创 Python小游戏开发:实现带道具加成的经典打砖块游戏

基本玩法小球通过挡板反弹,击碎上方的砖块。当砖块被击中时,小球反弹,砖块消失。如果小球掉到底部,则游戏结束。得分统计:每击碎一块砖块,玩家得分 +1。道具加成宽挡板加成:接住道具后,挡板宽度增加,便于反弹小球。加速球加成:接住道具后,小球移动速度提升,增加挑战性。中文显示:优化了字体设置,确保在游戏中可以正常显示中文。

2024-12-20 11:23:11 917

原创 Python小游戏开发:从零实现贪吃蛇游戏

最近,我花了一些时间用 Python 和 Pygame 实现了一个经典的小游戏——贪吃蛇。这个游戏不仅充满了童年的回忆,同时也非常适合作为学习编程的练手项目。本篇博客将分享完整的代码实现,并从项目结构、功能点以及优化技巧等多个方面进行详细解析。如果你是 Python 的初学者,或对游戏开发感兴趣,相信这篇文章会对你有所帮助!贪吃蛇是一款经典的益智休闲游戏,玩家通过键盘控制蛇的方向,吃掉食物让蛇变得更长,游戏的难度随着蛇的长度增加而逐步提高。一旦蛇撞墙或撞到自己的身体,游戏结束。

2024-12-20 11:11:55 876

原创 如何用 Python 爬取豆瓣电影 Top 250?

通过本文的学习,你已掌握了如何使用 Python 和 BeautifulSoup 爬取豆瓣电影 Top 250 榜单。这不仅帮助你加深了对网页爬虫的理解,也为进一步数据分析和项目开发打下了基础。技术将该榜单的所有电影标题抓取下来,并在本地保存或分析。好的,以下是一个适合发布在技术博客平台的完整博客模板,包含代码、解析和结果展示。如果你感兴趣,可以尝试扩展爬取电影的评分、简介、导演等信息,做更深入的数据分析。爬取的数据可存储为文件,如 CSV、TXT、JSON 格式,便于后续分析。提取所有包含电影标题的。

2024-12-17 11:05:23 2155

原创 什么是大模型?一文读懂大模型的基本概念

大模型(Large Model)通常指的是参数量非常庞大的人工智能(AI)模型,主要是深度学习技术发展的产物。随着数据规模的增长、计算能力的提升和算法的不断优化,AI 模型的规模也在不断扩大。大模型通常基于等先进的网络架构,拥有数十亿到数千亿的参数量,能够执行各种复杂的任务,如自然语言理解、图像识别、代码生成等。

2024-12-17 10:07:52 1199

原创 使用CNN模型实现猫狗分类

深度学习是一种模仿人脑过程学习的技术,它将若干层的神经网络(Neural Networks)进行组合,通过大量的数据学习,实现对实际问题的解决。深度学习是一种值得不断深考的技术和应用领域,无论是对自动化、工人智能还是科研,都用深度学习解决应用。上面的猫狗分类实例,体现了CNN的实力,快试试吧!

2024-12-17 09:59:50 650

原创 逻辑回归:从原理到应用的深入解析

逻辑回归是机器学习入门的重要算法之一,其核心思想简单直观,但应用潜力巨大。在实际问题中,结合适当的特征工程和正则化技巧,逻辑回归可以有效解决许多分类问题。如果您正在寻找一个高效且易解释的模型,逻辑回归是一个不错的选择!赶快尝试用自己的数据构建一个逻辑回归模型,探索背后的故事吧!

2024-12-16 18:12:07 560

原创 预测分手概率|逻辑回归模型

预测分手概率:逻辑回归模型的应用与实现在现代数据科学中,逻辑回归(Logistic Regression) 是一种广泛应用的分类算法,其核心是通过特征变量预测事件发生的概率。今天,我们将探讨如何使用逻辑回归来预测情侣分手的概率。逻辑回归是一种线性模型,尽管名字中包含“回归”,但它用于分类任务(例如分手/不分手)。其输出值是事件发生的概率,范围在0到1之间。通过最大化似然函数,逻辑回归估计这些参数,从而实现对概率的预测。预测情侣分手概率,需要选择能反映关系状态的关键特征,例如:假设我们有以下数据样本:数据的标

2024-12-16 18:09:51 867

原创 李峋同款爱心代码版来了

当鲜花和礼物不足以表达你的心意时,不妨尝试用代码来创造一份特别的表白。今天,我将教你如何利用 HTML5 + Canvas + JavaScript 来制作一颗动态粒子爱心,它不仅能散开,还能缓缓聚合成一颗美丽的心形,背景中更是飘动着浪漫的粉色粒子。让你的代码带着“心意”,去打动那个特别的人吧!下面是完整的 HTML、CSS 和 JavaScript 代码,你可以直接复制并运行:🧑‍💻 如何运行代码将以上代码复制到本地新建的 文件中。使用浏览器打开文件,即可看到粒子爱心动画效果。想要表白

2024-12-15 17:45:39 1504

原创 仓颉编程|案例体验

仓颉编程语言是一款面向全场景智能的新一代编程语言,主打原生智能化、天生全场景、高性能、强安全。要开始使用仓颉语言,首先需要安装其工具链。

2024-12-04 16:55:50 1149

原创 AI技术在电商行业的创新应用与发展趋势

AI技术为电商行业带来了从个性化推荐到高效运营的全面升级。在数字化转型的浪潮中,电商平台应当积极拥抱AI创新,推动用户体验与效率的双提升。同时,关注数据安全与技术融合,将是未来AI在电商行业成功落地的关键。期待更多企业与技术开发者共同探索,为电商行业的未来注入新的活力!

2024-12-04 15:01:38 981

原创 梯度提升树(GBDT)与房价预测案例

梯度提升树(Gradient Boosting Decision Tree, GBDT)是一种集成学习算法,它结合多个弱学习器(通常是决策树),通过迭代优化的方式提升模型性能。GBDT 在分类和回归任务中表现优异,是解决复杂非线性问题的重要工具。梯度提升树(GBDT)通过逐步拟合残差,在回归问题中表现优异。在房价预测任务中,GBDT 能够自动捕捉复杂的特征关系,提供准确的预测结果,同时特征重要性分析为业务决策提供支持。GBDT 的优点包括性能优越、易解释性强,但在大规模数据集上可能面临训练速度较慢的挑战。

2024-12-04 14:52:08 1136

原创 深度学习中的生成对抗网络(GAN)原理与应用

生成对抗网络(GAN)作为一种新型的生成模型,通过生成器和判别器的对抗式训练,能够生成极为逼真的数据,尤其在图像生成和风格转换等任务中取得了巨大的成功。尽管GAN存在一些训练难度和模式崩溃等问题,但随着技术的进步,许多改进方法已被提出并应用于实际问题中。随着生成模型的不断发展,GAN的应用前景仍然非常广阔,值得我们继续深入探索。

2024-11-30 20:41:01 1248

原创 深度学习中的迁移学习:应用与实践

迁移学习是一种通过转移已学知识来解决新问题的学习方法。传统的深度学习模型通常从零开始训练,需要大量标注数据来学习数据的特征。数据稀缺:在许多任务中,获得大量标注数据可能非常昂贵或耗时。计算资源有限:训练一个深度神经网络需要大量的计算资源,而迁移学习可以通过使用已有的预训练模型,节省大量计算时间。时间限制:从头开始训练模型通常需要较长的时间,而迁移学习通过重用已有的知识可以加速模型的开发。迁移学习通过利用在一个任务上获得的知识,帮助模型更快速、更高效地适应另一个任务。

2024-11-30 20:33:27 1236

原创 深度学习模型完成图像分类小项目

导入必要的库和数据集数据预处理构建卷积神经网络模型训练模型评估模型使用模型进行预测导入必要的库和数据集首先,我们需要导入Keras库并加载CIFAR-10数据集。Keras是一个高级深度学习框架,它提供了简洁的API,可以快速构建和训练神经网络。导入CIFAR-10数据集CIFAR-10类标签对应的名称在完成训练后,我们通过测试集评估了模型的准确率。训练过程中,随着迭代次数的增加,模型的准确率逐渐提高,最终达到了约**70-75%**的准确率(根据不同训练情况,可能会有所不同)。

2024-11-30 20:25:51 797

原创 人工智能中的深度学习:原理与实践

深度学习(Deep Learning)是机器学习的一个分支,旨在通过模拟人脑的神经网络结构来解决复杂的任务。深度学习通过多层神经网络,自动从数据中学习特征,避免了传统机器学习中手动特征工程的繁琐过程。深度学习在许多领域取得了突破性进展,包括计算机视觉、自然语言处理和语音识别等。

2024-11-30 20:16:54 1127

原创 机器学习模型从理论到实战|【009-梯度提升树】房价预测

梯度提升树(GBDT)是通过梯度提升方法(Gradient Boosting)构建的决策树集成。每棵树都在前一棵树的基础上进行改进,旨在减少预测误差。GBDT的基本思想是逐步拟合残差(误差),每次通过新一轮的训练减少上一轮模型的误差。初始化模型: 一开始使用一个常数(例如训练数据的均值)作为模型的初步预测。计算残差: 对每个样本,计算当前模型的残差(即真实值与预测值的差)。训练新的决策树: 训练一棵新的决策树,使得它能够预测残差。

2024-11-29 18:58:24 639

原创 机器学习模型从理论到实战|【008-朴素贝叶斯】垃圾邮件分类

朴素贝叶斯是一种基于条件概率的分类方法,利用贝叶斯定理来预测给定特征的条件下,数据点属于某一类别的概率。该算法的核心假设是特征之间相互独立,即在给定类别的条件下,特征之间没有依赖关系。朴素贝叶斯是一种基于贝叶斯定理的简单而高效的分类算法,特别适用于文本分类任务,如垃圾邮件分类和情感分析。尽管其假设特征之间相互独立的前提可能在某些情况下不成立,但在许多实际问题中,朴素贝叶斯仍然表现得相当好。通过合理的数据预处理和特征提取,朴素贝叶斯能够提供快速且准确的分类结果。

2024-11-29 18:49:12 960

原创 机器学习模型从理论到实战|【007-SVM 支持向量机】 SVM的情感分类

支持向量机(SVM)是一个强大的分类算法,其通过寻找最佳的决策边界来实现高效的分类。通过使用合适的核函数,SVM 可以处理线性和非线性数据,具有较强的泛化能力。尤其在小数据集上,SVM 能够通过最大化间隔,减少过拟合,并有效地应对噪声问题。在实际应用中,SVM 在文本分类、情感分析等领域表现尤为出色。

2024-11-29 18:48:42 1024

原创 机器学习模型从理论到实战|【006-K均值聚类(K-Means)】新闻主题分类

K均值聚类算法的基本思想是通过迭代优化,寻找最佳的聚类中心,并将数据点分配到与其距离最小的簇中心。其基本步骤包括:选择K个初始聚类中心: 随机选择K个数据点作为初始簇中心。分配数据点: 将每个数据点分配到离它最近的簇中心。更新聚类中心: 计算每个簇内所有数据点的均值,更新为新的簇中心。迭代优化: 重复步骤2和3,直到聚类中心不再发生变化或达到预定的迭代次数。

2024-11-29 18:35:34 747

原创 机器学习模型从理论到实战|【005-决策树与随机森林】客户流失预测

客户流失预测是许多企业特别关注的问题,尤其是在电信、金融等行业。通过使用随机森林模型,我们可以有效地识别哪些客户有较高的流失风险,并采取针对性的措施进行挽回。在我们的案例中,假设我们已经拥有了关于客户的各种数据,包括其使用的服务类型、账户余额、最近的交互历史等。这些特征可以帮助模型学习客户流失的模式。通过训练随机森林模型,我们能够得到一个分类器,该分类器能预测每个客户是否会流失。

2024-11-27 19:45:27 1498 1

原创 机器学习模型从理论到实战|【004-K最近邻算法(KNN)】基于距离的分类和回归

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。KNN(K-Nearest Neighbors)算法是一种基于距离的分类和回归方法。它的核心思想是:在一个有标签的数据集中,对于一个新的实例,根据距离度量找到与之最近的K个训练实例,然后基于这K个邻居的信息来预测新实例的标签。在分类问题中,最常见的做法是采用多数投票法,即K个最近邻中出现次数最多的类别将被赋予新实例。而在回归问题中,通常是计算K个最近邻的目标值的平均值作为预测结果。

2024-11-27 10:10:53 776

原创 机器学习模型从理论到实战|【003-逻辑回归】分类模型的起点

逻辑回归是机器学习中最经典的分类算法之一,尽管名字中有“回归”,但它主要用于分类问题。本文将详细介绍逻辑回归的理论基础、数学推导、扩展到多分类任务的思路,并通过一个案例学习如何使用逻辑回归模型进行实际预测。逻辑回归是一种用于分类问题的模型,它基于线性回归,通过将线性回归的输出映射到一个概率值范围(0到1),从而实现分类。

2024-11-27 09:45:05 1049

原创 机器学习模型从理论到实战|【002-使用线性回归完成房价预测】

线性回归通过建立目标变量(因变量)和一个或多个自变量(特征变量)之间的线性关系,预测目标值。其数学公式为:y:目标变量(预测值)x:特征变量β :特征x 的权重(系数)𝛽0 :截距ϵ:误差项房屋面积(平方英尺)卧室数量房屋年龄 目标是根据这些特征预测房价。本次项目展示了如何使用线性回归模型完成房价预测。尽管线性回归简单有效,但在实际问题中,特征与目标变量可能呈现复杂的非线性关系。这时,可以考虑改用其他模型,如决策树、随机森林或深度学习。!

2024-11-26 15:48:40 1099

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除