算法原理
模糊化过程
- 首先,对于输入数据进行模糊化。假设我们有一个输入变量,其取值范围为。我们定义若干个模糊集合,如 “小”“中”“大” 等。每个模糊集合都有其对应的隶属度函数,常见的隶属度函数有三角形隶属度函数、高斯隶属度函数等。
- 以三角形隶属度函数为例,如果的值在某个模糊集合的有效区间内,根据其在该区间内的位置,计算出属于该模糊集合的隶属度。比如,对于 “中” 这个模糊集合,若其三角形隶属度函数在区间内,当在这个区间内时,可通过公式计算出其隶属度值,该值在到之间,表示属于 “中” 这个模糊概念的程度。
神经模糊网络构建
- 构建一个基于自适应神经模糊推理系统(ANFIS)的网络结构。该网络一般有五层:
- 第一层是输入层,节点数等于输入变量的个数。每个节点将输入值传递到下一层。
- 第二层是模糊化层,每个节点对应一个模糊集合的隶属度函数,用于计算输入变量对于相应模糊集合的隶属度。
- 第三层是规则层,节点数等于模糊规则的数量。每个节点根据前一层的隶属度值计算出规则的激发强度。例如,如果有两条模糊规则 “如果是小且是小,那么是某值” 和 “如果是中且是中,那么是另一值”,这里通过与运算(一般是取最小值或乘积等方式)计算出每条规则的激发强度。
- 第四层是归一化层,对规则的激发强度进行归一化处理,使得所有规则的激发强度之和为。
- 第五层是输出层,根据归一化后的规则激发强度和相应规则的输出函数计算出最终的输出值。
自适应调整机制
- 在 OANFISA 中,对网络的